首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated quartzose pebbles, clusters of quartz granules, orthogonal aggregates of poorly sorted quartzose coarse sand, and ovoid pellets (≤2 mm long) of quartz silt occur in hemipelagic marine mudstone of the mid-Ediacaran Bunyeroo Formation exposed in the Adelaide Geosyncline (Adelaide Rift Complex), and ovoid pellets of quartz silt in cores of the correlative marine Dey Dey Mudstone from deep drillholes in the Officer Basin, South Australia. This detritus is interpreted respectively as dropstones, dumps, and frozen aggregates dispersed by sea ice possibly of seasonal origin, and till pellets transported by glacial ice. The ice-rafted material in the Bunyeroo Formation only has been found <10 m stratigraphically below and above a horizon of dacitic ejecta related to the 90 km diameter Acraman impact structure in the Mesoproterozoic Gawler Range Volcanics 300 km to the west. Furthermore, till pellets have been identified 4.4 to 68 m below distal Acraman ejecta in the Dey Dey Mudstone >500 km northwest of the impact site. The Acraman impact took place at a low paleolatitude (~12.5°) and would have adversely affected the global environment. The stratigraphic observations imply, however, that the impact occurred during, but did not trigger, a cold interval marked by sea ice and glacial ice, although the temporal relationship with Ediacaran glaciations elsewhere in Australia and on other continents is unclear. Release from the combined environmental stresses of a frigid, glacial climate near sea-level and a major impact in low latitudes may have been a factor influencing subsequent Ediacaran biotic evolution.  相似文献   

2.
A series of morphological structures, such as scars and escarpments related to seafloor instabilities, were observed in the Gulf of Cadiz using multibeam bathymetry and acoustic imagery. According to the geometry of the slide scars, the slope angle, the surrounding seafloor morphology and the mechanical parameters of the sediment, we suggest the likely mechanisms initiating the failures for the different types of observed structures. Most of the small-scale sediment failures (≤2 km2) seem directly related to dome-like structures (where slopes are steep) or are located in the vicinity of such structures (fluid flows). It appears that progressive deformation or fluid flow related to the growing of dome-like structures may have weakened the sediments sufficiently to bring 7°-steep slopes to metastable conditions (with a factor of safety close to 1.0). The other instability types are likely related to high-magnitude (Ms?>?6) earthquakes, which are prone to occur in this area (located in the neighbourhood of the 1755 Lisbon earthquake area). Some particular large-scale structures were observed among these seafloor features, for example on the Guadalquivir Bank. On this bank, a series of successive large scars (at least 4 km long), composed of multiple and very regular arcuate segments (1 km in diameter), were observed at different bathymetric levels (every 40 m). These structures might be related to a deep-rooted detachment zone (e.g. successive listric faults) and triggered by high-magnitude earthquakes or by accumulated displacement along a tectonic discontinuity. This would explain such a large-scale deformation, providing a regular escarpment of 40 m high without any sediment flow downslope, thereby suggesting an ongoing (or unfinished) deformation.  相似文献   

3.
In this study, we reveal a series of newly discovered submarine canyons, sediment waves, and mass movements on a flat and smooth seafloor using high-resolution, multi-beam bathymetry and shallow seismic surveys along the northern slope of the South China Sea. We also describe their geomorphology and seismic stratigraphy characteristics in detail. These canyons display U-shaped cross sections and are roughly elongated in the NNW–SSE direction; they are typically 8–25 km long, 1.2–7 km wide, and form incisions up to 175 m into Pliocene–Quaternary slope deposits at water depths of 400–1000 m. Slide complexes and the sediment wave field are oriented in the NE–SW direction and cover areas of approximately 1790 and 926 \(\hbox {km}^{2}\), respectively. Debris/turbidity flows are present within these canyons and along their lower slopes. Detailed analysis of seismic facies indicates the presence of six seismic facies, in which Cenozoic strata located above the acoustic basement in the study area can be roughly subdivided into three sequences (1–3), which are separated by regional unconformities (Tg, T4, and T3). By combining these data with the regional geological setting and the results of previous studies, we are able to determine the genetic mechanisms used to create these canyons, sediment wave field, and mass movements. For example, frontally confined slide complexes could have been influenced by high sedimentation rates and high pore pressures. A series of very large subaqueous sediment waves, which record wavelengths of 1.4–2 km and wave heights of 30–50 m, were likely produced by interactions between internal solitary waves and along-slope bottom (contour) currents. Canyons were likely initially created by landslides and then widened laterally by the processes of downcutting, headward erosion, and active bottom currents and debris/turbidity flows on canyon floors. We therefore propose a three-dimensional model to describe the development of these mass movements, the sediment wave field, and canyons. The four stages of this model include a stable stage, followed by the failure of the slope, and subsequent formations of the sediment wave field and canyons.  相似文献   

4.
The Gnargoo structure is located on the Gascoyne Platform, Southern Carnarvon Basin, Western Australia, and is buried beneath about 500 m of Cretaceous and younger strata. The structure is interpreted as being of possible impact origin from major geophysical and morphometric signatures, characteristic of impact deformation, and its remarkable similarities with the proven Woodleigh impact structure, about 275 km to the south on the Gascoyne Platform. These similarities include: a circular Bouguer anomaly (slightly less well-defined at Gnargoo than at Woodleigh); a central structurally uplifted area comprising a buried dome with a central uplifted plug; and the lack of a significant magnetic anomaly. Gnargoo shows a weakly defined inner 10 km-diameter circular Bouguer anomaly surrounded by a broadly circular zone, ~75 km in diameter. The north?–?south Bouguer anomaly lineament of the Giralia Range (a regional topographic and structural feature) terminates abruptly against the outer circular zone which is, in turn, intersected on the eastern flank by the Wandagee Fault. A <?28 km-diameter layered sedimentary dome of Ordovician to Lower Permian strata, surrounding a cone-shaped, central uplift plug of 7?–?10 km diameter, are inferred from the seismic data. Seismic-reflection data indicate a minimum central structural uplift of 1.5 km, as compared to a model uplift of 7.3 km calculated from the outer structural diameter. An interpretation of Gnargoo in terms of a plutonic or volcanic caldera/ring origin is unlikely as these features display less regular geometry, are typically smaller and no volcanic rocks are known in the onshore Gascoyne Platform. An interpretation of Gnargoo as a salt dome is likewise unlikely because salt structures tend to have irregular geometry, and no extensive evaporite units are known in the Southern Carnarvon Basin. Morphometric estimates of the rim-to-rim diameter based on seismic data for the central dome correspond to the observed diameter deduced from gravity data, and fall within the range of morphometric parameters of known impact structures. The age of Gnargoo is constrained between the deformed Lower Permian target rocks and unconformably overlying undeformed Lower Cretaceous strata. Because of its large dimensions, if Gnargoo is an impact structure, it may have influenced an environmental catastrophe during this period.  相似文献   

5.
Sundarban is a largest mangrove forest delta developed along the NE-SW direction covering parts of India and Bangladesh. Little work has been done on Indian part of Sundarban in respect of heterogeneity in channel morphology which could be mostly due to the effect of tilting and basin subsidence. These changes might have played a major role on development of high marshes, which offers a congenial environment for survival of Haplophragmoides wilberti, Jadammina macrescens, Trochammina inflata, and Miliammina fusca. These marsh benthonic foraminiferal assemblages provide a direct evidence of recent past sea level changes. To establish the depositional pattern and their effects rendered by merciless changing environment, 11 pit sections have been excavated along three E-W transects from Indian Sundarban. Depth of these pit sections varies from 2 to 3 m. Generally, top 20 cm sediment (in pit section W-1 to W-11) deposited under the intertidal environment, as indicated by the presence of Ammonia tepida. However, sediment below 20 cm in some of the pit sections (W-3 and W-5) exhibits fresh water signatures as indicated by the presence of Charophytes algae. In other pit sections (W-1, W-2, W-6, W-7, W-8, W-9 and W-11), the intertidal assemblage is noticed just above the upper marshes assemblage and vice versa, signifying that depositional environment is in proximity to the mangrove dominated area as indicated by the presence of marsh benthonic foraminiferal assemblage containing T. inflata, H. wilberti, Haplophragmoides sp., J. macrescens and M. fusca. Bottom sediment in most of the pit sections from south to north have different depositional environment with alternate presence of intertidal to subtidal faunal assemblages. The peculiar presence of intertidal assemblage above the upper marshes assemblages in recent sediment points towards the theory of submergence due to relative rise in the sea level. But the effect of relative sea level rise is not uniform throughout the area because of differential subsidence due to varied rate of sediment supply (0.5 to 3.3 cm/year) and eastward tilting of the basin. Based on the upper marshes benthonic foraminiferal assemblage and radiocarbon age (in W-1 at 100 cm ~?150 years age), the average subsidence rate as recorded is approximately 0.3 to 0.5 cm/year. Hence, such depositional sequence conjectures that the Indian part of Sundarban is undergoing a phase of submergence concomitant to basin subsidence.  相似文献   

6.
Franchthi Cave, bordering Kiladha Bay, in Greece, is a key archaeological site, due to its long occupation time, from?~?40,000 to?~?5000 year BP. To date, no clear evidence of Neolithic human dwellings in the cave was found, supporting the assumption that Neolithic people may have built a village where there is now Kiladha Bay. During the Neolithic period/Early Holocene, wide areas of the bay were indeed emerged above sea level. Bathymetric and seismic data identified a terrace incised by a valley in?~?1 to 2 m sediment depth. Eight sediment cores, up to 6.3-m-long, were retrieved and analysed using petrophysical, sedimentological, geochemical, and chronostratigraphic methods. The longest core extends into the exposure surface, consisting of a layer of carbonate rubble in a finer matrix, representing weathering processes. Dated organic remains place this unit at?~?8500 cal year BP. It is overlain by stiff silty mud representing an estuarine environment. This mud is capped by reduced sediments with roots marking an exposure surface. A shell-layer, dated to?~?6300 cal year BP, overlies this terrestrial sequence, reflecting the marine transgression. This layer occurs at 10.8 mbsl, 7.7 m deeper than the global sea level at that time, suggesting tectonic subsidence in the area. It is overlain by finer-grained marine carbonate-rich sediments. The top of the core shows traces of eutrophication, pebbles and marine shells, all likely a result of modern anthropogenic processes. These results are interpreted in the context of human occupation: the exposed surface contains pottery sherds, one dating to the Early to Middle Neolithic period, indicating that Neolithic people were present in this dynamic landscape interacting with a migrating coastline. Even if the artefacts are isolated, future investigations of the submerged landscape off Franchthi Cave might lead to the discovery of a Neolithic village, which eventually became buried under marine sediments.  相似文献   

7.
Abstract: Mount Bambouto is a polygenic stratovolcano of the Cameroon Volcanic Line, built between 21?Ma and 4.5?Ma. It is situated approximately 200?km NE of Mount Cameroon, between 09°55′ and 10°15′ longitude east and, 05°25′ and 05°50′ latitude north. The volcano covers an area of 500?km2 and culminates at 2740?m at Mélétan dome and bears a collapsed caldera at the summit (13?×?8?km). Mount Bambouto is characterized by several natural hazards of different origins: meteorological, such as landslides and rock falls; anthropogenic, such as bushfires, tribal wars and deforestation; and volcanological, such as volcanic eruption. The thematic map shows that 55–60% of the caldera has high probability of occurrence of mass movement. The caldera has a high population density (3000 inhabitants), which increases the level of risk, evaluated at approximately $US3.8 million for patrimony, 3000 civilian deaths and destruction of biodiversity.  相似文献   

8.
At Brisbane Airport, the construction of a diversion channel for Kedron Brook exposed a former beach, low cliff and sand spit, which, with their associated sediments and acid sulfate soils, demonstrate a postglacial high sea-level 1.3 – 1.4 m above present mean sea-level. The beach appears to date from 4000 to 5000 y BP. It varies in level where it lies above soft ground; these variations, and sag depressions that follow buried streamlines, indicate sediment consolidation since withdrawal of the sea from the former shore. Most of the area consists of former estuarine deposits, mangrove and saline marshes, and stranded tidal flats on which acid sulfate soils are widely developed. The modern landforms mostly reproduce subsurface features, to the extent that the surface relief replicates the landscape transgressed by the sea 7000 years ago. A small rise of sea-level possibly to +0.65 m occurred about 2000 – 3000 years ago. Foredunes near the present shore that are related to a slightly lower level 1000 – 500 years ago (?0.25 m) are currently subject to wave erosion.  相似文献   

9.
The Glikson structure is an aeromagnetic and structural anomaly located in the Little Sandy Desert of Western Australia (23°59'S, 121°34′E). Shatter cones and planar microstructures in quartz grains are present in a highly deformed central region, suggesting an impact origin. Circumferential shortening folds and chaotically disposed bedding define a 19 km-diameter area of deformation. Glikson is located in the northwestern Officer Basin in otherwise nearly flat-lying sandstone, siltstone and conglomerate of the Neoproterozoic Mundadjini Formation, intruded by dolerite sills. The structure would not have been detected if not for its strong ring-shaped aeromagnetic anomaly, which has a 10 km inner diameter and a 14 km outer diameter. We interpret the circular magnetic signature as the product of truncation and folding of mafic sills into a ring syncline. The sills most likely correlate with dolerites that intrude the Boondawari Formation ~25 km to the north, for which we report a SHRIMP U?–?Pb baddeleyite and zircon age of 508?±?5 Ma, providing a precise older limit for the impact event that formed the Glikson structure.  相似文献   

10.
The Fairway Basin is a large, generally north – south-trending, sediment-filled structure in water 1500 – 3000 m deep, on the eastern slope of the Lord Howe Rise in the Tasman Sea, and is partly within Australian jurisdiction. It was poorly known until a few years ago, when seismic profiling and piston coring cruises were carried out. The basin, about 1100 km long and 120 – 200 km wide, can be divided into three segments—north, central and south—that trend northwest, north and north-northwest, respectively. All three segments probably formed by thinning of continental crust during breakup of Lord Howe Rise and surrounding aseismic continental ridges in the Late Cretaceous and Paleocene. Normal faulting, large inputs of terrigenous sediment and subsidence to bathyal marine depths occurred during that time. A period of compression, perhaps related to overthrusting on New Caledonia, occurred in the Eocene, leading to uplift (and in parts, erosion) of northern Lord Howe Rise, and reversal of faulting in the basin. By the Oligocene, the area was again in bathyal depths, and pelagic ooze and some turbidites accumulated. The basinal sequence is generally 2000 – 4000 m thick, with 1200 – 3200 m of Cretaceous to Eocene sediment concentrated in depocentres, capped by 500 – 800 m of Oligocene and younger sediment. In the depocentres, numerous sedimentary diapirs pierce sedimentary sequences. The sedimentary diapirs appear to be fed by Cretaceous muds deposited during rifting. Often, these diapirs are overlain by faults extending to the seafloor, and hummocky bathymetry is possibly caused by fluid escape. The overall geology suggests that the Fairway Basin may be a large frontier hydrocarbon province. Seismic profiles display a bottom-simulating reflector above many depocentres, 500 – 700 m below the seafloor. The bottom-simulating reflector has positive polarity, which could result from a diagenetic phase transformation, a thin gas hydrate layer with a sharp top, or from the sharp base of a gas layer (probably beneath gas hydrates). Standard piston cores taken above diapirs and apparent fluid-escape features have recovered little gas. Other than drilling, the next steps in assessing petroleum potential are to clearly document fluid-escape structures, and to sample any fluids emitted for hydrocarbons.  相似文献   

11.
Multidisciplinary research during the past 25 years has established that the Acraman impact structure in the 1.59 Ga Gawler Range Volcanics on the Gawler Craton, and an ejecta horizon found 240?–?540 km from Acraman in the ??580 Ma Bunyeroo Formation in the Adelaide Fold Belt and Dey Dey Mudstone in the Officer Basin, record a Late Neoproterozoic (Ediacaran) event of major environmental importance. Research since 1995 has verified Acraman as a complex impact structure that has undergone as much as 3?–?5 km of denudation and which originally had a transient cavity up to 40 km in diameter and a final structural rim possibly 85?–?90 km in diameter. The estimated impact energy of 5.2?×?106 Mt (TNT) for Acraman exceeds the threshold of 106 Mt nominally set for global catastrophe, and the impact probably caused a severe perturbation of the Ediacaran environment. The occurrence of the impact at a low palaeolatitude (12.5 +?7.1/???6.1°) may have magnified the environmental effects by perturbing the atmosphere in both hemispheres. These findings are consistent with independent data from the Ediacaran palynology of Australia and from isotope and biomarker chemostratigraphy that the Acraman impact induced major biotic change. Future research should seek geological, isotopic and biological imprints of the Acraman?–?Bunyeroo impact event across Australia and on other continents.  相似文献   

12.
The purpose of this study is to evaluate the groundwater-withdrawal potential of the Fraser River watershed, a mountainous drainage system in north-central Colorado. Laboratory tests, field investigations, and numerical modeling are conducted to present a quantitative understanding of the watershed’s groundwater-flow system. Aquifer hydraulic conductivity values obtained from aquifer tests range from 1E?5 to 1E?3 m/s. Groundwater withdrawal is concentrated in channel-fill deposits of the Troublesome Formation within the Fraser basin. A steady state groundwater-flow model of the Fraser River watershed is developed and calibrated using 24 observation wells in the Fraser River valley and estimated baseflow of the Fraser River. Modeling results suggest that surface recharge is the major source of groundwater in the watershed. Groundwater exits the watershed through evapotranspiration and discharge to rivers. Transient groundwater-flow modeling evaluates future withdrawal scenarios using the hydraulic head distribution from the steady state model as the initial condition. Drawdown within Troublesome Formation aquifers from the current pumping schedule approaches 2 m. When the daily pumping rate is doubled, drawdown approaches 4 m. The radius of influence is hundreds of meters to 1 km. Pumping wells withdraw approximately 2 and 15 % of groundwater flowing through the well field for hydraulic conductivity of 1E?3 and 1E?5 m/s, respectively. This study suggests that the groundwater system at the Fraser Valley could sustain current and future withdrawals, given that the current recharge condition is maintained.  相似文献   

13.
Gravity modelling was carried out along five profiles that traverse the Eastern Cape Province of South Africa in order to determine the depositional surface and isochore thickness of the Ecca sediments.Gravity models of the subsurface rock density reveal that the Ecca Group has a maximum vertical thickness of about 3215 ± 160 m.The maximum depositional surface(elevation)above sea level for the Ecca sediments is about 500 m,whilst the depth below sea level reaches about10000 m.Correlation of the isochore thickness maps with the depositional surfaces shows that the sediments in the basement highs were subsided,deformed,eroded and deposited in the basement lows.The basement highs served as the source area(s) for the sediments in the basement lows,thus basement highs are characterized with thin sediment cover whilst the lows have thick sediment cover.  相似文献   

14.
On causes and impacts of land subsidence in Bandung Basin, Indonesia   总被引:2,自引:1,他引:1  
The Bandung Basin is a large intra-montane basin surrounded by volcanic highlands, in western Java, Indonesia, inhabited by more than seven million people. The basin, an area of about 2,300 km2, is a highland plateau at approximately 650–700 m above sea level and is surrounded by up to 2,400 m high Late Tertiary and Quaternary volcanic terrain. Based on the results of nine GPS surveys conducted since 2000 up to 2011, it was shown that several locations in the Bandung Basin have experienced land subsidence, with an average rate of about ?8 cm/year and can go up to about ?23 cm/year in certain locations. A hypothesis has been proposed by several studies that land subsidence observed in several locations in the Bandung Basin has been caused mainly by excessive groundwater extraction. It is found that there is a strong correlation between the rates of groundwater level lowering with the GPS-derived rates of land subsidence in several locations in Bandung Basin. The GPS results in this study detected significant subsidence in the textile industry area, where very large volumes of groundwater are usually extracted. The impact of land subsidence in Bandung can be seen in several forms, mainly in the cracking and damage of houses, buildings and infrastructure. Land subsidence also aggravates the flooding in Bandung Basin, which has brought huge economic losses and deteriorated the quality of life and environment in the affected areas.  相似文献   

15.
Long-period natural-source electromagnetic data have been recorded using portable three-component magnetometers at 39 sites in 1998 and 2002 across the southern Eyre Peninsula, South Australia that forms part of the Gawler Craton. Site spacing was of order 5 km, but reduced to 1 km or less near known geological boundaries, with a total survey length of approximately 50 km. A profile trending east – west was inverted for a 2D electrical resistivity model to a depth of 20 km across the southern Eyre Peninsula. The main features from the models are: (i) on the eastern side of the Gawler Craton, the Donington Suite granitoids to the east of the Kalinjala Shear Zone are resistive (>1000 Ωm); (ii) the boundary between the Donington Suite granitoids and the Archaean Sleaford Complex, which has much lower resistivity of 10 – 100 Ωm, is almost vertical in the top 10 km and dips slightly westwards; and (iii) two very low resistivity (<1 Ωm) arcuate zones in the top 3 km of Hutchison Group sediments correlate with banded iron-formations, and are probably related to biogenic-origin graphite deposits concentrated in fold hinges. Such features suggest an extensional regime during the time period 2.00 – 1.85 Ga. We suggest that the resistivity boundary between the Donington Suite and the Archaean Sleaford Complex represents a growth fault, typical for rift systems that evolve into a half-graben structure. In the graben basin, low-resistivity shallow-marine Hutchison Group sediments were deposited. Folding of the sediments during the Kimban Orogeny between 1.74 and 1.70 Ga has led to migration of graphite to the fold hinges resulting in linear zones of very low resistivity that correlate with banded iron-formation magnetic anomalies.  相似文献   

16.
Analysis of high-resolution multibeam bathymetry and seismic profiles in the Noggin Passage region, north-eastern Australia, has identified a small area (Noggin block) in the upper-slope offshore Cairns that may potentially collapse and generate a tsunami wave. The Noggin block extends from 340 to 470 m depth covering a roughly circular (2.4 km long and 3.7 km wide) area of about 5.3 km2. The well-defined margins of the block correspond to different bounding seabed features. These features include steep headscarps, small landslides and a group of aligned circular pockforms up to 500 m wide and 20 m deep. Slope stability simulations indicate that the Noggin block is stable under normal present-day gravitational conditions on the upper slope. However, block failure may result under external loads, such as those produced by earthquakes. Failure modelling shows that critical peak horizontal accelerations of 0.2–0.4 g could lead to the collapse of the Noggin block. In north-eastern Australia, these acceleration values would involve earthquakes generated at short hypocentral distances and short periods. The collapse of the potential sediment slide mass of about 0.86 km3 (162 m average thickness) may lead to the formation of a landslide-generated tsunami wave. Semi-empirical equations indicate the collapse of this mass would yield a 7–11-m high three-dimensional tsunami wave. These waves could reach an estimated run-up height at the coast of 5–7 m. Our first-order approach highlights the potential consequences for nearby coastal communities, the need for better sediment characterisation in the study area, and the systematic identification of other areas prone to slope failures along the Great Barrier Reef margin.  相似文献   

17.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   

18.
Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.  相似文献   

19.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

20.
Effects of sediment extraction and dam construction on changes of riverbed characteristics over yearly to decadal scales in the lower Tedori River of Japan are clarified. Over 1950–1991, the riverbed degraded in excess of 0.5–3.5 m. Concurrently, riverbed sediment volume of the 0–16 km reach decreased by 12.7 × 106 m3. Intensive sediment extraction was the dominant cause of riverbed degradation during the period. During 1991–2007, an increase in riverbed sediment volume of 0.6 × 106 m3 resulted in accretion of the riverbed by average depth 0.04 m. The cessation of sand and gravel mining (SGM), coupled with Tedorigawa Dam operation since 1980, was responsible for that accretion. Temporal change in riverbed elevation during 1950–2007 indicates that there were five phases of vertical adjustment. Combination of nonlinear regression models described four of these phases well. During 1950–1979, the first four modes of empirical orthogonal function analysis successfully captured temporal and spatial responses of the riverbed to natural and anthropogenic impacts. That is, the first mode explained the mean riverbed profile and temporal variation in riverbed sediment volume. The second through fourth spatial eigenfunctions reflected spatial variation in vertical adjustment rate for phases II, III and I, respectively. The corresponding temporal eigenfunctions explained the respective effects on the riverbed of SGM, of imbalance between sediment transport capacity and sediment supply, and of dredging activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号