首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.  相似文献   

2.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

3.
The circular structure at Mohar (Dhala structure) in the western part of Bundelkhand Gneissic Complex, is marked by a prominent outlier of Kaimur sediments surrounded by low lying concentric sequence of sediments of Dhala Formation and basement granite breccia. This has been interpreted as a volcanic eruption related cauldron structure and meteoritic impact crater structure by various authors, on the basis of absence or presence of shock indicators in the clasts of a rhyolite-like rock that crops out scantily in the north western part of the structure. During the course of extensive sub-surface uranium exploration in this structure, the geoscientists of Atomic Minerals Directorate for Exploration and Research observed unequivocal and rampant evidences of shock metamorphic features for the first time in drill core samples of basement granitoids which constitute the bed rock for the rhyolite-like melt breccia, which overlies it. Published data of shock metamorphic features from this area are largely confined to the surface samples of the rhyolite-like melt rock, exposed in sparse outcrops. The shock metamorphic features recorded in the sub-surface granitoid bed rock samples during the present study, comprise planar deformation features (PDF) in quartz, feldspar, apatite and zircon, toasted, diaplectic, ladder-textured feldspars, selectively shock-melted feldspars and melt-veined quartz. The shock metamorphic features recorded in surface and sub-surface samples of the melt rock include ballen quartz, PDF in quartz clasts, toasted and diaplectic feldspar clasts shocked basic rock fragments with isotropised feldspars. Both the shocked bedrock granitoid and the melt rock bear uncharacteristic geochemical signatures with elevated K2O, MgO and depleted CaO. The study also observes that the melt breccia overlying the granitoid bedrock also occurs as pocket-like patches at various depths within the granitoids. Thus, the present findings have helped in understanding the attributes of the basement granitoid and associated melt breccia, thereby linking the genesis of the latter by selective melting of the former, due to the process of impact. It reinforces the already propounded theory of impact as the likely cause for the development of the structure in the basement Bundelkhand granitoid that was later filled by sediments standing out presently as a mesa.  相似文献   

4.
Submicroscopic opaque particles from highly shocked granite-gneisses close to the core of the Vredefort impact structure have been investigated by means of micro-analytical techniques with high spatial resolution such as electron diffraction, orientation contrast imagery and magnetic force microscopy. The opaque particles have been identified as nano- to micro-sized magnetite that occur in several distinct modes. In one sample magnetite occurs along relict planar deformation features (PDFs) in quartz, generally accepted as typical shock lamellae. The magnetite particles along shock lamellae in quartz grains virtually all show uniform crystallographic orientations. In most instances, the groups of magnetite within different quartz grains are systematically misorientated such that they share a subparallel <101> direction. The magnetite groups of all measured quartz grains thus appear to have a crystallographic preferred orientation in space. In a second sample, orientations of magnetite particles have been measured in microfractures (non-diagnostic of shock) of quartz, albite and in the alteration halos, (e.g. biotite grains breaking down to chlorite). The crystallographic orientations of magnetite particles are diverse, with only a minor portion having a preferred orientation. Scanning electron microscopy shows that magnetite along the relict PDFs is invariably associated with other microcrystalline phases such as quartz, K-feldspar and biotite. Petrographic observations suggest that these microcrystalline phases crystallized from locally formed micro-melts that intruded zones of weakness such as microfractures and PDFs shortly after the shock event. The extremely narrow widths of the PDFs suggest that heat may have dissipated rapidly resulting in melts crystallizing relatively close to where they were generated. Magnetic force microscopy confirms the presence of magnetic particles along PDFs. The smallest particles, <5 μm with high aspect ratios 15:1 usually exhibit intense, uniform magnetic signals characteristic of single-domain magnetite. Consistent offsets between attractive and repulsive magnetic signals of individual single-domain particles suggest consistent directions of magnetization for a large proportion of particles. Received: 16 November 1998 / Accepted: 17 May 1999  相似文献   

5.
The textural relationships and structural states of optically isotropic labradorite from the Manicouagan, Quebec, impact structure have been examined by light (optical) and transmission electron (TEM) microscopy. Two distinct diaplectic glasses have been recognized based on their contrasting morphology, timing and the inferred modes of formation. The earliest isotropic bands and grain-scale isotropism (maskelynite) optically exhibit a gradational,in situ transformation from crystalline plagioclase with preservation of relict textures (twins, grain boundaries). The same transformation from crystalline to amorphous structure is observed in TEM to occur heterogeneously at scales on the order of the unit cell. The progressive transformation of optical properties reflects an increase in the volume fraction and eventual coalescence of these amorphous units. This maskelynite-type diaplectic glass is interpreted to form in the solid-state directly from crystalline material during the compressional phase of the shock wave. The other isotropic material occurs in spatially discrete tensiongashes and planar deformation features (PDFs) that overprint the maskelynite-type glass. This second type of diaplectic glass (PDF-type) is developed homogeneously within a given glass band and exhibits sharp crystal-glass boundaries, in contrast to the gradational boundaries of the maskelynite-type glass. PDF-type glass is interpreted to form by melting in tensional release zones during passage of the rarefaction wave. These observations emphasize the ability of naturally shocked rocks to preserve subtle evidence of variations in the shock process from highly transient events.  相似文献   

6.
In the geological sciences it has only recently been recognized how important the process of impact cratering is on a planetary scale, where it is commonly the most important surface-modifying process. On the Moon and other planetary bodies that lack an appreciable atmosphere, meteorite impact craters are well preserved, and they can commonly be recognized from morphological characteristics, but on Earth complications arise as a consequence of the weathering, obliteration, deformation, or burial of impact craters and the projectiles that formed them. These problems made it necessary to develop diagnostic criteria for the identification and confirmation of impact structures on Earth. Diagnostic evidence for impact events is often present in the target rocks that were affected by the impact. The conditions of impact produce an unusual group of melted, shocked, and brecciated rocks, some of which fill the resulting crater, and others which are transported, in some cases to considerable distances from the source crater. Only the presence of diagnostic shock-metamorphic effects and, in some cases, the discovery of meteorites, or traces thereof, is generally accepted as unambiguous evidence for an impact origin. Shock deformation can be expressed in macroscopic form (shatter cones) or in microscopic forms (e.g., distinctive planar deformation features [PDFs] in quartz). In nature, shock-metamorphic effects are uniquely characteristic of shock levels associated with hypervelocity impact. The same two criteria (shock-metamorphic effects or traces of the impacting meteorite) apply to distal impact ejecta layers, and their presence confirms that materials found in such layers originated in an impact event at a possibly still unknown location. As of 2009 about 175 impact structures have been identified on Earth based on these criteria. A wide variety of shock-metamorphic effects has been identified, with the best diagnostic indicators for shock metamorphism being features that can be studied easily by using the polarizing microscope. These include specific planar microdeformation features (planar fractures [PFs], PDFs), isotropization (e.g., formation of diaplectic glasses), and phase changes (high pressure phases; melting). The present review provides a detailed discussion of shock effects and geochemical tracers that can be used for the unambiguous identification of impact structures, as well as an overview of doubtful criteria or ambiguous lines of evidence that have erroneously been applied in the past.  相似文献   

7.
A progressive change in the level of shock deformation is documented in autochthonous rocks from the central uplift of the Slate Islands impact structure, Lake Superior. Correlation of these observations, which are based mainly on the relative frequency of planar features of specific crystallographic orientation in quartz, with experimental data is used to estimate the average shock pressures recorded in the samples studied. Recorded pressures range from 5.8 to 15.3 GPa and generally increase towards the proposed shock centre. Variations in the shock response of quartz of different grain size and texture are observed within and between samples. It is apparent that large interlocking quartz grains in eyes record approximately 15–20% higher levels of shock deformation than small grains in mosaics or large isolated phenocrysts. These variations in shock deformation are attributed to the effect of shock wave reverberations between grains and length of shock pulse duration within grains.Comparison of the Slate Islands data with similar observations at the larger Charlevoix impact structure indicates that the rate of change of recorded shock pressure with distance is greater at the Slate Islands structure. This is interpreted as due to variations in the strain rates and/or the rate of shock wave attenuation with radial distance between impact structures of different size.Contribution from Earth Physics Branch No. 626  相似文献   

8.
岫岩陨石坑石英的冲击变质特征   总被引:3,自引:0,他引:3  
陈鸣 《矿物学报》2011,31(2):161-165
直径1.8 km的岫岩陨石坑位于辽宁省岫岩县苏子沟镇。坑区基岩为下元古界变质岩,由变粒岩、片麻岩、角闪岩、透闪岩和大理岩等岩石组成。坑内充填的撞击角砾岩石英颗粒呈现典型的冲击变质特征,其中包括沿着石英(0001)、{10 11}、{10 12}和{10 13}等方向发育的多组面状变形页理,以及石英发生相转变形成二氧化硅玻璃和柯石英。产出在二氧化硅玻璃中的针状和粒状柯石英表明从二氧化硅熔体中结晶形成。石英面状变形页理的发育特点限定冲击压力高达35 GPa,而二氧化硅熔体玻璃的存在表明冲击压力高达50 GPa。当压力释放和温度升高,二氧化硅熔体首先被形成。随着压力进一步释放到2.5~13 GPa,柯石英从二氧化硅熔体中结晶析出。岫岩陨石坑中石英面状变形页理和柯石英的存在提供了矿物冲击变质的诊断性证据。  相似文献   

9.
Crystalline rocks from breccias of the Ries basin, Germany, contain highly deformed quartz. Various planar deformation structures could be observed and classified into five different types: (1) Decorated planar elements, (2) Non-decorated planar elements, (3) Homogeneous lamellae, (4) Filled lamellae, (5) Planar fractures. All these structures are parallel to crystallographic planes: {10¯13}, {10¯12}, {10¯11}, {0001},{11¯21}, {11¯22}, {21¯31}, {51¯61}, {10¯10}. The most typical and most abundant planar structures are decorated and nondecorated planar elements parallel to {10¯13} and {10¯12}. Planar fractures are parallel to {0001} and {10¯11} and form at lower stress levels, probably earlier than the planar elements.Quartz containing planar elements, especially of the non-decorated type, has lower density, index of refraction and birefringence than normal quartz. This quartz is apparently a mixture of an amorphous phase and crystalline quartz, the amount of which can be calculated using average density or refractive index.Comparison of planar quartz structures found in tectonites and those produced artificially under static or dynamic high pressure conditions demonstrates that Ries quartz closely resembles deformed quartz recovered from shock wave experiments. The planar structures found in Ries quartz have been formed by shock wave actions with peak pressures in the 100–400 kbar range.Planar elements are explained to be traces of gliding processes during shock loading visible due to the fact that a high pressure phase (stishovite and/or a stishovite-like glass phase) has been produced along the glide planes. Upon pressure release most of the high pressure phase was transformed into an SiO2-glass (diaplectic glass).In comparison with experimental data the amount of residual crystalline quartz as well as type and orientation of planar structures in the quartz grains are clues to estimate the peak pressures responsible for these deformations. Shock waves with peak pressures exceeding about 400 kbar completely transform quartz into diaplectic SiO2-glass.  相似文献   

10.
The Amelia Creek impact structure is located in Australia's Northern Territory in folded Palaeoproterozoic strata of the Davenport Ranges (20°51'S, 134°53′E). An impact origin is confirmed by presence of unequivocal shatter cones with apices that point upwards, and by planar microstructures in quartz grains from target sandstones of the Hatches Creek Group. Aeromagnetic, advanced spaceborne thermal emission and reflection radiometer (ASTER), and X-band synthetic aperture radar (X-SAR) images show an area of anomalous deformation in which smooth regional trends are disrupted by arcuate features at a 10 km radius to the north and south of the shock-metamorphosed rocks. However, no arcuate forms are apparent to the east and west of these shocked rocks, and instead, large south-southwest-trending faults are present about 6 km away on both sides. Despite pervasive shatter coning, typical of the central region of complex impact structures, no structural uplift is apparent, but instead the shocked rocks lie at the southern toe of a north-northeast-trending syncline. These shatter cones overprint and post-date the Palaeoproterozoic regional deformation, and thus, the impact structure has not been refolded and its abnormal form is likely due to pre-existing structure in the target rocks and/or an oblique impact. Small pockets of undeformed Late Neoproterozoic and Middle Cambrian strata are exposed in palaeovalleys in the central region of the structure, constraining the time of the impact to the Proterozoic.  相似文献   

11.
We have investigated by Transmission Electron Microscopy (TEM) the planar deformation features(PDF) in quartz from various sites where shock metamorphism has been detected optically: impact sites; the Vredefort complex (South Africa) and the K/T boundary at Raton Basin (Colorado). PDFs are straight narrow bands of glass or microtwins or huge densities of dislocations. Such contrasting microstructures must reflect different shock scenarios. In the Vredefort complex the post-shock thermal history has strongly overprinted the shock-induced defects. In the Raton Basin samples very tiny bubbles have precipitated on the dislocations, strongly suggesting a lengthy annealing at moderate pressure and temperature. This new information should be taken into account in any model of the origin of the K/T transition. In any case, observation of PDFs by optical microscopy alone is not sufficient to unambiguously conclude on their origin.  相似文献   

12.
Goat Paddock in northern Western Australia is a ~5 km-diameter impact crater of Eocene age excavated in gently dipping Proterozoic sandstones. Roughly radial gorges formed by post-impact erosion provide cross-sectional views of the wall and rim zone. The predominant structural theme is one of synclinal rim folding with broad zones in which bedrock strata were deformed by impact to steep, vertical and overturned attitudes. Impact breccia is found craterward of deformed bedrock, on top of it, and downdropped into fault troughs roughly concentric to the crater. The bedrock?–?breccia contact is sharp in some places and gradational in others. In at least one section, the entire mass of upturned bedrock and breccia was displaced radially over essentially undisturbed bedrock, as indicated by slickensides on the horizontal contact. Talus deposits are similar to breccia, but show rough size sorting and clast orientation that dips steeply craterward, indicating that the talus formed as slides down the oversteepened crater wall immediately after crater formation. Shatter cones in some clasts indicate that allogenic material is incorporated in these deposits. Suevite, characterised by ropy flow textures, and by microclasts of quartz with planar deformation features, planar fractures, and of vesiculated silica glass, was found overlying deformed bedrock at a point where the surface of the bedrock forms a nearly horizontal bench midway up the crater wall. The crater was at least partially filled by later sediments, represented by bedded conglomerate close to the crater wall grading inward to sand, silt and mudstone recovered by drillholes on the crater floor. Some of the talus and conglomerate occupy re-entrants in the crater walls, suggesting an original scalloped outline to the crater. Two drillholes, one central and one halfway to the wall, both reached brecciated sandstone after penetrating 210 m of lake sediments. Goat Paddock has a flat floor with no indication of a central uplift and a depth/diameter ratio of ~0.073. This crater form, coupled with the modification of the crater walls by slumping and the scalloped outline of the crater rim suggests that Goat Paddock bridges the two traditional classes of impact crater: simple and complex.  相似文献   

13.
对产出在花岗岩基底中的6722铀矿床长英质隐爆碎屑岩地质构造行征进行了研究,并与我国在相似地质条件下进行的地下核爆炸试验产生的地质效应作了对比,类比计算出形成该隐爆碎屑岩体的爆炸能量(TNT当量)。采用偏光显微镜和透射电镜(TEM)研究隐爆碎屑岩中花岗岩角砾内石英的显微裂隙构造,光性特征及自由位错的类型和密度并与基底花岗岩(大富足花岗岩体)中的石英进行对比。综合研究阐明的类型和密度,并与基底花岗岩(大富足花岗岩体)中的石英进行对比。综合研究阐明6722铀矿床隐爆碎屑岩的形成机制届于一种在高温(>400℃ )条件下由瞬问爆炸而产生的脆性变形作用,同时引起石英中位错退火现象的发生。  相似文献   

14.
The central anorthosite peak of the Maniconagan crater displays characteristic shock deformation and transition phenomena in plagioclase feldspars, scapolithe, apatite and other maphitic minerals. The optical orientation of plagioclases is determined. With increasing shock, a trend to a highly disordered structure of the plagioclase lattice can be observed. Rock fracturing occurs at low pressures. At higher pressures different kinds of isotropisation features and planar deformation structures in plagioclase, scapolithe and apatite can be distinguished. These planar elements can be interpreted as glide planes of low crystallographic indices, set in motion during shock compression by plastic deformation. Their optical orientation is measured. At very high pressures a completely isotropic phase, the s. c. diaplectic glass is formed. The physical properties of diaplectic plagioclase crystals and diaplectic glass are determined which are different from those of an unshocked crystal and its molten plagioclase glass of the same chemical composition. The diaplectic plagioclase phases are apparently mixed phases of molten glass and normal crystal. This can be proved by x-ray and infrared absorption studies. These results are correlated to shock recovery experiments and hugoniot states of plagioclase. All shock effects of plagioclases are classified into three groups according to the low pressure regime, mixed phase regime and high pressure regime. The low pressure regime is characterised by strong fracturing, the mixed phase regime by the development of planar elements, which were transformed during shock compression into the high pressure plagioclase phase with hollandite structure. The latter is converted into diaplectic glass after pressure release. The high pressure regime is characterised by complete transformation of plagioclase into the high pressure phase, which is unstable and reverts completely to the amorphous phase (diaplectic glass or maskelynite) at zero pressure density.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. v. Engelhardt, danke ich für die Unterstützung bei der Bearbeitung des Themas. Herrn Dr. D. Stöffler danke ich für klärende Diskussionen und Ratschläge. Dem Ministère des Richesses Naturelles, Québec, Canada, sowie Herrn M.S. J. Murtaugh sei für die großzügige Unterstützung bei den Geländearbeiten im Manicouagan-Krater gedankt. Die Deutsche Forschungsgemeinschaft hat die Arbeit finanziell unterstützt.  相似文献   

15.
New insights into the 3D structure, composition and origin of the Mt Ashmore dome, west Bonaparte Basin, Timor Sea, are enabled by reprocessed seismic-reflection data and by optical microscopic, X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM) analyses of drill cuttings. The structural dome, located below a major pre-Oligocene post-Late Eocene unconformity and above a ~6 km-deep-seated basement high indicated by marked gravity and magnetic anomalies, displays chaotic deformation at its core and a centripetal kinematic deformation pattern. A study of drill cuttings of Lower Oligocene to Lower Jurassic sedimentary rocks intersected by the Mt Ashmore 1B petroleum-exploration well reveals microbrecciation and extreme comminution and flow-textured fluidisation of altered sedimentary material. The microbreccia is dominated by aggregates of poorly diffracting micrometre to tens of micrometres-scale to sub-millimetre particles, including relic subplanar fractured quartz grains, carbonate, barite, apatite and K-feldspar. A similar assemblage occurs in fragments in basal Oligocene sediments, probably derived from the eroded top section of the dome, which protrudes above the unconformity. SEM coupled with EDS show the micrometre to tens of micrometres-scale particles are characterised by very low totals and non-stoichiometric compositions, including particles dominated by Si, Al–Si, Si–Ca–Al, Si–Al–Ca, Si–Mg, Fe–Mg–Ca, Fe–Mg and carbonate. XRD analysis identifies a high proportion of amorphous poorly diffracting material. TEM indicates internally heterogeneous, fragmented and recrystallised structure of the amorphous grains, which accounts for the low totals in terms of the high-volatile and porous nature of the particles. Another factor for the low totals is the uneven thin-section surfaces which affect the totals. No volcanic material or evaporites were encountered in the drillcore, militating against interpretations of the structure in terms of magmatic intrusion or salt diapirism. Such models are also inconsistent with the strong gravity and magnetic anomalies, which signify a basement high below the dome. An interpretation of the dome in terms of a central rebound uplift of an impact structure can not be proven due to the lack of shock metamorphic effects such as planar deformation features, impact melt or coesite. However, an impact model is consistent with the chaotic structure of the domal core, centripetal sense of deformation, microbrecciation, comminution and fluidisation of the Triassic to Eocene rocks. In this respect, an analogy can be drawn between the Mt Ashmore structural dome and likely but unproven impact structures formed in volatile (H2O, CO2)-rich sediments where shock is attenuated by high volatile pressure, such as Upheaval Dome, Utah. In terms of an impact hypothesis the Mt Ashmore dome is contemporaneous with a Late Eocene impact cluster (Popigai: D = 100 km, 35.7 ± 0.2 Ma; Chesapeake Bay: D = 85 km, 35.3 ± 0.1 Ma).  相似文献   

16.
The Slate Islands archipelago is believed to represent the central uplifted portion of a complex impact structure. Planar microstructures in quartz and feldspars and shock vitrification of rocks are the most common shock metamorphic features encountered. No diaplectic quartz was identified in the exposed rocks, but minor maskelynite is present. Shatter cones occur on all islands of the archipelago suggesting minimum pressures of 4 ± 2 GPa. The relative frequency of low index planar microstructures of specific, optically determined crystallographic orientations in quartz are correlated with results from shock barometric experiments to estimate peak shock pressures experienced by the exposed target rocks. In general, there is a decrease in shock pressure recorded in the target rocks from about 20–25 GPa in east-central Patterson Island to about 5–10 GPa at the western shore of this island and on Mortimer Island. The shock attenuation gradient is ∼4.5 GPa/km across this section of the island group. However, the shock attenuation has a roughly concentric plan only over the western part of the archipelago. There is no distinct shock center and there are other deviations from circularity. This is probably the result of: (1) the shock wave not having expanded from a point or spherical source because of the ∼1. 0 to 1.5 km size of the impactor; (2) differential movement of large target rock blocks during the central uplift and crater modification phases of the impact process. The orientation of planar deformation features in quartz appears to be independent of the shock wave direction suggesting that crystal structure exerts the primary control on microstructure development. Based on the results of XRD analyses, residual, post-impact temperatures were high enough to cause annealing of submicroscopic damage in shocked quartz. Received: 15 July 1997 / Accepted: 6 October 1997  相似文献   

17.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

18.
The Matt Wilson structure is a circular 5.5 km-diameter structure in Early Mesoproterozoic or Neoproterozoic rocks of the Victoria Basin, Northern Territory. It lies in regionally horizontal to gently dipping Wondoan Hill and Stubb Formations (Tijunna Group) and Jasper Gorge Sandstone (Auvergne Group). An outer circumferential syncline with dips of 5?–?40° in the limbs surrounds an intermediate zone with faulted sandstone displaying horizontal to low dips, and a central steeply dipping zone about 1.5 km across. Several thrust faults in the outer syncline appear to indicate outward-directed forces. The central zone, marked by steeply dipping to overturned Tijunna Group and possibly Bullita Group sandstone and mudstone, indicates uplift of at least 300 m. The rocks are intensely fractured with some brecciation, and contain numerous planar to subtly undulating surfaces displaying striae which resemble shatter cleavage. Thin-sections of sandstone from the central area show zones of intense microbrecciation and irregular and planar fractures in quartz, but no melt-rocks have been identified. The planar fractures occur in multiple intersecting parallel sets typical of relatively low-level (5?–?10 GPa) shock-pressure effects. Alternative mechanisms, i.e. igneous intrusion, carbonate collapse, diapirism and regional deformation processes, have been discounted. The circular nature, central uplift, faulting, shatter features and planar fractures are all consistent with an impact origin. The Matt Wilson structure is most likely a deeply eroded impact structure in which the more highly shocked rocks of the original crater floor have been removed by erosion. Estimates of the age of the Auvergne and Tijunna Groups range from Early Mesoproterozoic (which we favour) to Late Neoproterozoic. Early Cambrian Antrim Plateau Volcanics near the impact structure show no signs of impact effects, allowing the age of impact to be constrained between Early Mesoproterozoic and Early Cambrian. The presence of widespread soft-sediment deformation features, apparently confined to a single horizon in the Saddle Creek Formation some 700?–?1000 m stratigraphically higher in the Auvergne Group than the rocks at the impact site, and apparently increasing in thickness towards the Matt Wilson structure, lead us to speculate that this probable event horizon is related to the impact event: if correct the impact occurred during deposition of the Saddle Creek Formation.  相似文献   

19.
Polymict cristalline breccias are typical impact products of the Ries crater. They occur within the Ries crater (Appetshofen, Lierheim, Leopold Meyers Keller), on its rim (Maihingen-Klostermühle) and within the immediate vicinity of the crater (Itzing). Apart from very rare admixtures of sedimentary rock fragments the polymict cristalline breccias consist almost exclusively of fragments of various cristalline rocks, namely granites, gneisses and amphibolites. The petrographical and statistical investigations have shown that breccias from different localities have different composition. This reflects a possible difference in local compositions of the cristalline basement. The rocks in the breccias have been affected to various degress by shock metamorphism. The amphibolites could thus be shown to belong predominantly to stage I (diaplectic quartz and feldspar, 100–300 kb) and stage II (diaplectic quartz and feldspar glasses, 350–500 kb) whereas the granites and geisses can be attributed mostly to stage 0 (fractured quartz and feldspar, <100 kb) and stage I. This is in part the result of the bulk shock wave impedance of the rocks in question.Deformation structures resulting from shock metamorphism have been observed for the first time in sphene as well as in various planes of apatite.A large part of breccia rocks, which contain diaplectic quartz and feldspar glasses were altered into montmorillonite at a later date. The authigenic minerals were examined by x-rays and chemically by microprobe analysis.

Herrn Prof. Dr. W. von Engelhardt danke ich für Diskussion und Beratung. Dem Bundesministerium für Bildung und Wissenschaft sei für die finanzielle Unterstützung dieser Arbeit gedankt.  相似文献   

20.
Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), \(\left( 10\bar{1} \right)\), \(~\{110\}\), \(\left\{ 212 \right\},\) and type two (irrational) twin planes with rational shear directions in \([0\bar{1}\bar{1}]\) and \([\bar{1}\bar{1}0]\). SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010?±?15 Ma (2σ, n?=?9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259?±?5 Ma (2σ, n?=?7), which is consistent with previous impact age estimates of 255?±?3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号