首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central anorthosite peak of the Maniconagan crater displays characteristic shock deformation and transition phenomena in plagioclase feldspars, scapolithe, apatite and other maphitic minerals. The optical orientation of plagioclases is determined. With increasing shock, a trend to a highly disordered structure of the plagioclase lattice can be observed. Rock fracturing occurs at low pressures. At higher pressures different kinds of isotropisation features and planar deformation structures in plagioclase, scapolithe and apatite can be distinguished. These planar elements can be interpreted as glide planes of low crystallographic indices, set in motion during shock compression by plastic deformation. Their optical orientation is measured. At very high pressures a completely isotropic phase, the s. c. diaplectic glass is formed. The physical properties of diaplectic plagioclase crystals and diaplectic glass are determined which are different from those of an unshocked crystal and its molten plagioclase glass of the same chemical composition. The diaplectic plagioclase phases are apparently mixed phases of molten glass and normal crystal. This can be proved by x-ray and infrared absorption studies. These results are correlated to shock recovery experiments and hugoniot states of plagioclase. All shock effects of plagioclases are classified into three groups according to the low pressure regime, mixed phase regime and high pressure regime. The low pressure regime is characterised by strong fracturing, the mixed phase regime by the development of planar elements, which were transformed during shock compression into the high pressure plagioclase phase with hollandite structure. The latter is converted into diaplectic glass after pressure release. The high pressure regime is characterised by complete transformation of plagioclase into the high pressure phase, which is unstable and reverts completely to the amorphous phase (diaplectic glass or maskelynite) at zero pressure density.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. v. Engelhardt, danke ich für die Unterstützung bei der Bearbeitung des Themas. Herrn Dr. D. Stöffler danke ich für klärende Diskussionen und Ratschläge. Dem Ministère des Richesses Naturelles, Québec, Canada, sowie Herrn M.S. J. Murtaugh sei für die großzügige Unterstützung bei den Geländearbeiten im Manicouagan-Krater gedankt. Die Deutsche Forschungsgemeinschaft hat die Arbeit finanziell unterstützt.  相似文献   

2.
The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.  相似文献   

3.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

4.
Shock recovery experiments on melilite samples in the pressure range from 11 to 50.5 GPa have been performed in order to examine the effects of shock waves on this material. The shocked samples were subsequently studied in the transmission electron microscope. All samples displayed the shock-induced amorphous areas, known as diaplectic glass. The amount of diaplectic melilite glass increased from a few percent at 11 GPa to about 85 percent at 50.5 GPa shock pressure. The shock waves also caused deformational effects as planar faults parallel to (001) and dislocations with a density in the order of 1010 cm?2. Regarding the present discussion on the origin and nature of diaplectic glass, diaplectic melilite glass is assumed to be the reversion product of a high-density phase produced in the shock front. Deformed melilites in Ca-Al-rich inclusions from chondritic meteorites studied so far do not contain diaplectic glass. It is assumed that the meteoritic melilites were hot (>1,000° C) and thus plastically deformable by shock waves of rather low amplitudes.  相似文献   

5.
Two kinds of glasses are to be found in the breccias of the Ries basin both which have been generated by shock wave action on the rocks of the crystalline basement: a) Normal glasses, containing flow structures and vesicles; they are formed by shock waves of high energy which after unloading, leave behind material, the temperature of which is above the melting point. b) Diaplectic glasses without vesicles and flow structures, preserving the grain boundaries, cleavages and twin lamellae of the primary minerals; they are formed by shock waves of lower energy which destroy the crystal lattice but after unloading, leave behind material, the temperature of which is below the melting point. — Measurements have been taken of the density and index of refraction of diaplectic quartz- and plagioclase-glasses. The values obtained proved to be higher than those of the normal glasses and lower than those of the crystalline phases. Diaplectic glasses are distinguishable from normal glasses by their physical properties. They represent intermediate stages of structural order between the crystalline and normal glass phases.  相似文献   

6.
Samples of synthetic diaplectic anorthite glass (38 GPa shock pressure), thermal glass and synthetic anorthite crystals were investigated using infrared spectral methods at one atmosphere and high pressures (near 4 GPa). Band positions and pressure derivatives for the Si-O asymmetric modes in the region 1,300–900 cm?1 indicate that the diaplectic glass has more structural similarities with the crystalline material than with thermal glass even though the overall infrared spectral characteristics suggest a glassy state.  相似文献   

7.
Raman microprobe spectra were made on three post shock, diaplectic plagioclase feldspars. Optical and X-ray diffraction studies indicated that feldspars maintained a partially or totally crystalline state after having passed through the mixed phase zone of Hugoniot response to shock waves (15–38 GPa). The appearance of uniquely glass-type spectra occurs at different shock pressures for each specimen according to its atomic structural arrangement, below 38 GPa for mosaic structured labradorite, near 40 GPa for anorthite and above 50 GPa for the highly ordered low albite. The diaplectic anorthite and labradorite glasses give spectra which indicate the presence of two glass types. Shifts in the band envelope frequencies compared to spectra of fused glass and statically pressure densified glass suggest that these glasses have specific structural arrangements. These differences suggest that the shock and fusion glass-forming processes are not exactly identical. The results from material shocked in the mixed phase region of Hugoniot response show that the phase transitions are effected at different pressures depending upon the feldspar structural type.  相似文献   

8.
Enthalpies of solution in molten 2PbO·B2O3 at ~988 K have been measured for diaplectic labradorite glass from the Manicouagan impact crater and a fused glass formed from the same material. The enthalpies of solution of the diaplectic and fusion-formed glasses are 4,347 and 2,023 cal mol?1, respectively. The more endothermic enthalpy of solution of the diaplectic glass indicates a greater relative energetic stability of about 2.3 kcal mol?1. The data are consistent with Diemann and Arndt's (1984) structural model that suggests the diaplectic glass is more ordered than fusion-formed glass and with the presence of crystallites. Comparison of data to enthalpies of solution of crystalline labradorite (Carpenter et al. 1985) indicates a maximum percentage of crystalline relics of ~15–18%, also consistent with Diemann and Arndt's (1984) estimate of <17%. Thus the diaplectic glass is intermediate in thermochemical properties between normal glass and crystal (much closer to glass) and does not represent any state more unstable than normal fusion-formed glass.  相似文献   

9.
Crystalline rocks from breccias of the Ries basin, Germany, contain highly deformed quartz. Various planar deformation structures could be observed and classified into five different types: (1) Decorated planar elements, (2) Non-decorated planar elements, (3) Homogeneous lamellae, (4) Filled lamellae, (5) Planar fractures. All these structures are parallel to crystallographic planes: {10¯13}, {10¯12}, {10¯11}, {0001},{11¯21}, {11¯22}, {21¯31}, {51¯61}, {10¯10}. The most typical and most abundant planar structures are decorated and nondecorated planar elements parallel to {10¯13} and {10¯12}. Planar fractures are parallel to {0001} and {10¯11} and form at lower stress levels, probably earlier than the planar elements.Quartz containing planar elements, especially of the non-decorated type, has lower density, index of refraction and birefringence than normal quartz. This quartz is apparently a mixture of an amorphous phase and crystalline quartz, the amount of which can be calculated using average density or refractive index.Comparison of planar quartz structures found in tectonites and those produced artificially under static or dynamic high pressure conditions demonstrates that Ries quartz closely resembles deformed quartz recovered from shock wave experiments. The planar structures found in Ries quartz have been formed by shock wave actions with peak pressures in the 100–400 kbar range.Planar elements are explained to be traces of gliding processes during shock loading visible due to the fact that a high pressure phase (stishovite and/or a stishovite-like glass phase) has been produced along the glide planes. Upon pressure release most of the high pressure phase was transformed into an SiO2-glass (diaplectic glass).In comparison with experimental data the amount of residual crystalline quartz as well as type and orientation of planar structures in the quartz grains are clues to estimate the peak pressures responsible for these deformations. Shock waves with peak pressures exceeding about 400 kbar completely transform quartz into diaplectic SiO2-glass.  相似文献   

10.
Physical properties and the crystallization behavior of natural diaplectic labradorite glass of the shocked anorthosite from the Manicouagan impact crater have been studied. Glasses prepared by laboratory fusion of this anorthosite and a synthetic An55 plagioclase composition were used for comparison. The close similarities in the mid-and far-infrared spectra of the diaplectic and fused glasses indicate a comparable degree of short-range order and lack of long-range order in their structures. They also show an identical viscosity-temperature relation, reflecting a similar and probably high degree of coherence of the (Si,Al)O4 tetrahedra in the network. However, striking differences exist in the crystallization characteristics. Diffusion-controlled crystallization takes place in the fused glass between about 900 and 1,400° C and proceeds generally by the advance of dendritic crystal layers from the surface into the interior of the samples. By contrast, diffusion plays a minor, if any, role in the crystallization of the diaplectic glass, which, on annealing between 800 and 1,000° C reverts to the original plagioclase structure and the primary mineral grains are restored. From the present experimental results it is suggested that high shock-induced temperatures cause onset of the melting process in the compressed crystalline labradorite. However, due to the extremely short duration of the transient high-temperature excursions, the crystal-melt transition does not come to completion. Instead, a disordered transitional state of the compressed material is frozen-in which is recovered after pressure release as diaplectic glass. Its structure thus represents a frozen-in disordered state intermediate between the structures of the crystalline labradorite and its melt. It appears that the diaplectic glass structure is rather inhomogeneous, thereby reflecting the heterogeneous deformational and thermal conditions associated with shock compression.  相似文献   

11.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   

12.
The structural state of diaplectic labradorite glass (≈An58) from the Manicouagan impact crater and of its fusion-formed glass analog have been investigated by X-ray diffraction studies. The experimental X-ray intensity distribution patterns indicate that the diaplectic and fusion-formed glasses are structurally rather similar, the former being apparently slightly less disordered. Theoretical X-ray distribution curves have been calculated using the structure of high albite as a quasi-crystalline model of the glass structure. The experimental and theoretical curves show fair similarity when the calculations are based on the complete unit cell. It is inferred therefore, that the structures of both kinds of glasses possess an average short range order comparable to that in high albite and extending to about the dimensions of the unit cell. In addition, the experimental X-ray scattering pattern and X-ray Debye-Scherrer transmission photographs of the diaplectic glass reveal the presence of relics up to about 8 nm in size of the previous crystalline lattice of the primary labradorite. The present results support Grady's shear band model according to which diaplectic glass may represent the quench product of a shock-generated high-density melt frozen in prior to total pressure release.  相似文献   

13.
Raman vibrational spectra and X-ray diffractometer scans were obtained from experimentally shocked samples of oligoclase (An19) and andesine (An49). Some 11 oligoclase and 15 andesine targets were shocked between 24 and 40 GPa to address the transition from crystalline to diaplectic states and to explore differences in the structural state of diaplectic feldspar glasses (maskelynite) as a function of peak shock stress. Thy symmetrical VS (T-O-T) (T=Si or Al) stretch bands are the most persistent. They disappear, however, in the noise of an unusually strong luminescent spectrum at > 32 GPa in the oligoclase and at > 30 GPa in the andesine; i.e., at pressures where transition to diaplectic glass is complete. The Raman investigations yield a maskelynite structure that is probably one of a multitude of very small domains with some order, but with a large range of local properties on the scale of small domains, either in heterogeneous size-distribution of domains or in their detailed order, if not both. This results in a very large number of Raman photon-phonon frequencies unlike glasses derived from quenched melts. Our study corroborates conclusions by others, that diaplectic glasses may be the quench products of very dense, disordered phases that exist during shock compression and that subsequently relax to these unusually dense glasses that are only known from shock processes. An origin by relaxation of highly ordered, genuine high pressure polymorphs possessing the structure of hollandite is unlikely, as no evidence for any six-fold Si-coordination was found. Detailed luminescent emission spectra were taken of the oligoclase samples and they show disappearance of the IR band and a strengthening of the green band (the blue band could not be detected with a primary radiation of wavelength 448 nm). This supports previous views that the disappearance of IR emission is most likely caused by shock-induced changes of the crystal field near Fe3+ sites, rather than due to quenching by Fe2+. The X-ray studies were primarily intended to explore whether differences in structural states of maskelynite occur on sufficiently large scales to be detected by standard diffractometry methods. This is not the case. X-ray diffractometer patterns are grossly similar, if not identical, in samples shocked between 30 and 40 GPa and may not be used to fine-tune the shock histories of naturally produced diaplectic glasses.  相似文献   

14.
Clasts of shocked garnet-sillimanite gneisses comprise a minor fraction of the allochthonous breccia at the Haughton impact structure. Refractive indices of the diaplectic and fused components of the gneisses, and reduced specific gravity indicate shock pressures from 35 to 55±5 GPa and effective post-shock temperatures from 500° to 1,000° C in a suite of selected samples.Sillimanites remain birefringent but display several effects of shock metamorphism. Shock-produced planar features and planar fractures are highly developed; optic axial angle (2V y ) increases from near normal (26°) to over 80° within a sample; there is a reduction in optical relief and a development of a pale brown colouring which generally deepens in shade as shock level increases. There is no unambiguous evidence, optically or from X-ray investigation, of a high-pressure Al2SiO5 polymorph or breakdown to mullite and silica. The highly shocked sillimanites have anomalous K2O contents from 0.11% to 0.92%. Potassium appears to substitute for aluminum and, to a lesser degree, for iron while retaining sillimanite stoichiometry, and the amount of substitution generally reflects increased shock level. The source of the contributed potassium is the coexisting shock-fused feldspar glass. The glass of each sample is derived primarily from melted alkali feldspar with a minor and varied admixture from the breakdown of mafic minerals. The glasses are depleted in K2O, although Na2O is unaffected, and the extent of depletion can be correlated with the increased K2O content of the associated sillimanite. The incorporation of potassium in shocked sillimanites is a function of both degree of shock deformation and availability of potassium from other coexisting shocked phases. It is speculated that the brown colouration is a function of ferrous iron content and may reflect post-crater thermal history rather than shock level.Contribution from the Earth Physics Branch No. 951  相似文献   

15.
青金石结构有无序和有序之别。无序青金石为光性均质体,但它的有序化及由此引起的结构调制,则有可能使青金石产生光性异常。使结构仍保持立方对称的有序化并不改变它光性上的均质性,而其他形式的有序化以及结构调制,如果它们是多方向的 且在空间取向上具有立方对称的特征,则晶体仍是光性均质体,否则便转变为光性非均质体 。此外,还提出了根据选区电子衍射花样对结构调制方向进行三维判识的可能性;报道了在所研究青金石中发现的沿[110]方向n=4的有公度调制的有序结构,以及所观察到的其他有序结构和无公度调制结构。  相似文献   

16.
17.
The intergrowth of diaplectic glass and primitive anorthite has been observed in fragments shocked to 300 kbar. The textures observed by electron microscopy are similar to those produced in shocked quartz crystals. The diffuseness of reflections, related to antiphase domains, show no noticeable change in comparison with unshocked specimens. These results indicate that no gradual change in original domain size occurs and that the transformation of primitive anorthite to diaplectic glass occurs abruptly.  相似文献   

18.
We have investigated by Transmission Electron Microscopy (TEM) the planar deformation features(PDF) in quartz from various sites where shock metamorphism has been detected optically: impact sites; the Vredefort complex (South Africa) and the K/T boundary at Raton Basin (Colorado). PDFs are straight narrow bands of glass or microtwins or huge densities of dislocations. Such contrasting microstructures must reflect different shock scenarios. In the Vredefort complex the post-shock thermal history has strongly overprinted the shock-induced defects. In the Raton Basin samples very tiny bubbles have precipitated on the dislocations, strongly suggesting a lengthy annealing at moderate pressure and temperature. This new information should be taken into account in any model of the origin of the K/T transition. In any case, observation of PDFs by optical microscopy alone is not sufficient to unambiguously conclude on their origin.  相似文献   

19.
The Tanqua area of the Karoo basin, South Africa, contains five Permian deep-water turbidite fan systems, almost completely exposed over some 640 km2. Reconstruction of the basin-fill and fan distributions indicates a progradational trend in the 450 m+ thick succession, from distal basin floor (fan 1) through basin-floor subenvironments (fans 2, 3 and 4) to a slope setting (fan 5). Fans are up to 65 m thick with gradational to sharp bases and tops. Facies associations include basin plain claystone and distal turbidite siltstone/claystone and a range of fine-grained sandstone associations, including low- and high-density turbidite current deposits and proportionally minor debris/slurry flows. Architectural elements include sheets of amalgamated and layered styles and channels of five types. Each fan is interpreted as a low-frequency lowstand systems tract with the shaly interfan intervals representing transgressive and highstand systems tracts. All fans show complex internal facies distributions but exhibit a high-frequency internal stratigraphy based on fan-wide zones of relative sediment starvation. These zones are interpreted as transgressive and highstand systems tracts of higher order sequences. Sandy packages between these fine-grained intervals are interpreted as high-frequency lowstand systems tracts and exhibit dominantly progradational stacking patterns, resulting in subtle downdip clinoform geometries. Bases of fans and intrafan packages are interpreted as low- and high-frequency sequence boundaries respectively. Facies juxtapositions across these sequence boundaries are variable and may be gradational, sharp or erosive. In all cases, criteria for a basinward shift of facies are met, but there is no standard 'motif' for sequence boundaries in this system. High-frequency sequences represent the dominant mechanism of active fan growth in the Tanqua deep-water system.  相似文献   

20.
The Slate Islands archipelago is believed to represent the central uplifted portion of a complex impact structure. Planar microstructures in quartz and feldspars and shock vitrification of rocks are the most common shock metamorphic features encountered. No diaplectic quartz was identified in the exposed rocks, but minor maskelynite is present. Shatter cones occur on all islands of the archipelago suggesting minimum pressures of 4 ± 2 GPa. The relative frequency of low index planar microstructures of specific, optically determined crystallographic orientations in quartz are correlated with results from shock barometric experiments to estimate peak shock pressures experienced by the exposed target rocks. In general, there is a decrease in shock pressure recorded in the target rocks from about 20–25 GPa in east-central Patterson Island to about 5–10 GPa at the western shore of this island and on Mortimer Island. The shock attenuation gradient is ∼4.5 GPa/km across this section of the island group. However, the shock attenuation has a roughly concentric plan only over the western part of the archipelago. There is no distinct shock center and there are other deviations from circularity. This is probably the result of: (1) the shock wave not having expanded from a point or spherical source because of the ∼1. 0 to 1.5 km size of the impactor; (2) differential movement of large target rock blocks during the central uplift and crater modification phases of the impact process. The orientation of planar deformation features in quartz appears to be independent of the shock wave direction suggesting that crystal structure exerts the primary control on microstructure development. Based on the results of XRD analyses, residual, post-impact temperatures were high enough to cause annealing of submicroscopic damage in shocked quartz. Received: 15 July 1997 / Accepted: 6 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号