首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planar elements in quartz, produced by shock induced plastic deformation, have been investigated in four quartz-plagioclase veins contained in an amphibolite from the crystalline basement of the Ries Crater from the drill hole Nördlingen 1973.The crystallographic orientation of planar elements in quartz grains is similar in all four rocks ({10¯13} predominant, {0001} less frequent, {10¯12} and others still rarer), indicating an average shock pressure in the range between 150 and 200 kbar.The spatial density of planar elements as measured by the number of systems per shocked grain, the number of individual elements per shocked grain, or as ratio shocked: unshocked grains increases with increasing grain size. This grain size effect is supposed to be primarily a consequence of the heterogeneity of the stress field which produced a random distribution of local stress maxima and locally restricted areas of plastic quartz deformation in the rock. The probability that planar elements develop within one individual grain increases, therefore, with increasing grain size.In one leucosome in which the quartz grains were randomly oriented planar elements parallel to {10¯13} cluster in a stereographic projection within one belt. It is supposed that the pole of this belt indicates the direction in which the shock front passed through the rock.  相似文献   

2.
Mechanical deformation features in shocked biotites from crystalline rocks of the Ries crater are: kink bands, planar elements, and plastic lattice deformations as determined by X-ray investigations.Kink bands can be observed in micas of various pressure histories (stages 0, I, II and less frequently stage III of shock metamorphism). Kink bands in shocked micas are less symmetrical than kinks of static origin. Asymmetry increases with increasing dynamic pressures. Moreover, kink band width is sensitive against changing peak pressures. Distribution of kinked and undistorted micas within a rock permits to fix the shock front direction. Shock-induced kinks in micas are produced by various gliding processes in the cleavage plane (001).Planar elements seldom occur in biotites of shock stages II and III and have never been described in endogenic rocks. Up to now orientations of planar elements parallel to (111), (1¯11), (112) and (11¯2) have been determined. Planar elements are interpreted as planes of plastic lattice gliding. {[110]} is supposed to be the main gliding direction. In the same pressure region other plastic lattice deformations have been determined. They are orientated parallel to (001), (100) and (¯132) or (201) which results from single crystal X-ray investigations and may represent planes of plastic lattice gliding. The dependency of formation of gliding planes and gliding directions on increasing dynamic pressures will be discussed.  相似文献   

3.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   

4.
Polymict cristalline breccias are typical impact products of the Ries crater. They occur within the Ries crater (Appetshofen, Lierheim, Leopold Meyers Keller), on its rim (Maihingen-Klostermühle) and within the immediate vicinity of the crater (Itzing). Apart from very rare admixtures of sedimentary rock fragments the polymict cristalline breccias consist almost exclusively of fragments of various cristalline rocks, namely granites, gneisses and amphibolites. The petrographical and statistical investigations have shown that breccias from different localities have different composition. This reflects a possible difference in local compositions of the cristalline basement. The rocks in the breccias have been affected to various degress by shock metamorphism. The amphibolites could thus be shown to belong predominantly to stage I (diaplectic quartz and feldspar, 100–300 kb) and stage II (diaplectic quartz and feldspar glasses, 350–500 kb) whereas the granites and geisses can be attributed mostly to stage 0 (fractured quartz and feldspar, <100 kb) and stage I. This is in part the result of the bulk shock wave impedance of the rocks in question.Deformation structures resulting from shock metamorphism have been observed for the first time in sphene as well as in various planes of apatite.A large part of breccia rocks, which contain diaplectic quartz and feldspar glasses were altered into montmorillonite at a later date. The authigenic minerals were examined by x-rays and chemically by microprobe analysis.

Herrn Prof. Dr. W. von Engelhardt danke ich für Diskussion und Beratung. Dem Bundesministerium für Bildung und Wissenschaft sei für die finanzielle Unterstützung dieser Arbeit gedankt.  相似文献   

5.
Zusammenfassung Hornblende-Einkristallzylinder (Fundort: Luckow, Böhmen) verschiedener Orientierung wurden in einer Stempel-Zylinder Hochdruck-Apparatur bei Drucken bis 21 kb und 20° C verformt. Die Versuche haben gezeigt, daß an Hornblenden durch Anwendung von Drucken >10 kb kristallographisch indizierbare Deformationsstrukturen erzeugt werden können. Bei Druck [001] und [h0l] beobachtet man mechanische, polysynthetische Zwillingsbildung nach (¯101) (Aufstellung (C2/m). Ab ca. 20 kb bilden sich daneben Scherbrüche nach {141}. Druck [010] bewirkt ab ca. 15 kb eine {120}-Spaltbarkeit, die jedoch hinter der nach {110} stark zurückbleibt.
Deformation of hornblende single crystals at pressures up to 21 kbs
Cylinders drilled from hornblende single crystals were deformed at 20° C in a pistoncylinder high-pressure apparatus in the following orientations: [001], [h0l], normal to (110), normal to (100) and [010]. Pyrophyllite was used for transmitting the confining pressure. Experiments with cylinder axis [001] and [h0l] revealed lamellar twinning on (¯101) at pressures above l0 kbs. The twinning elements are: K 1=(¯101), 1 = [¯10¯1], K 2=(100), 2=[001], s=0.56 (space group setting C2/m). At pressures around 20 kbs, {141}-shear fracture was observed. This means that the SiO4-ribbons parallel to [001] are broken. Crystals compressed parallel to [010] show {120} cleavage at pressures above 15 kbs.


Der überwiegende Teil der experimentellen Arbeit wurde im Mineralogischen Institut der Technischen Hochschule Darmstadt durchgeführt. Der Deutschen Forschungsgemeinschaft sei für materielle Hilfe gedankt.  相似文献   

6.
The central anorthosite peak of the Maniconagan crater displays characteristic shock deformation and transition phenomena in plagioclase feldspars, scapolithe, apatite and other maphitic minerals. The optical orientation of plagioclases is determined. With increasing shock, a trend to a highly disordered structure of the plagioclase lattice can be observed. Rock fracturing occurs at low pressures. At higher pressures different kinds of isotropisation features and planar deformation structures in plagioclase, scapolithe and apatite can be distinguished. These planar elements can be interpreted as glide planes of low crystallographic indices, set in motion during shock compression by plastic deformation. Their optical orientation is measured. At very high pressures a completely isotropic phase, the s. c. diaplectic glass is formed. The physical properties of diaplectic plagioclase crystals and diaplectic glass are determined which are different from those of an unshocked crystal and its molten plagioclase glass of the same chemical composition. The diaplectic plagioclase phases are apparently mixed phases of molten glass and normal crystal. This can be proved by x-ray and infrared absorption studies. These results are correlated to shock recovery experiments and hugoniot states of plagioclase. All shock effects of plagioclases are classified into three groups according to the low pressure regime, mixed phase regime and high pressure regime. The low pressure regime is characterised by strong fracturing, the mixed phase regime by the development of planar elements, which were transformed during shock compression into the high pressure plagioclase phase with hollandite structure. The latter is converted into diaplectic glass after pressure release. The high pressure regime is characterised by complete transformation of plagioclase into the high pressure phase, which is unstable and reverts completely to the amorphous phase (diaplectic glass or maskelynite) at zero pressure density.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. v. Engelhardt, danke ich für die Unterstützung bei der Bearbeitung des Themas. Herrn Dr. D. Stöffler danke ich für klärende Diskussionen und Ratschläge. Dem Ministère des Richesses Naturelles, Québec, Canada, sowie Herrn M.S. J. Murtaugh sei für die großzügige Unterstützung bei den Geländearbeiten im Manicouagan-Krater gedankt. Die Deutsche Forschungsgemeinschaft hat die Arbeit finanziell unterstützt.  相似文献   

7.
The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.  相似文献   

8.
Deformed, synthetic quartz containing a dislocation density of 2.9 ± 1.9 × 108/cm2 and abundant bubbles and small inclusions was shocked to peak pressures of 12 and 24 GPa. The resultant material was inhomogeneously deformed and extremely fractured. The 12 GPa sample contained large regions lacking apparent shock deformation, suggesting that the original microstructure of a quartz target may be distinguished in low-stress shocks with minimal annealing. No change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. Generally the same types of microstructures were induced by shock of deformed quartz as by shock of relatively defect-free as-grown crystals. Glass-filled veins were abundant, especially at lower stresses, and contained angular fragments of quartz welded together. Microfaults formed on \({{\{ 10\bar 11\} } \mathord{\left/ {\vphantom {{\{ 10\bar 11\} } {\{ 01\bar 11\} }}} \right. \kern-0em} {\{ 01\bar 11\} }}\) and \({{\{ 11\bar 22\} } \mathord{\left/ {\vphantom {{\{ 11\bar 22\} } {\{ 1\bar 212\} }}} \right. \kern-0em} {\{ 1\bar 212\} }}\) , inclined close to 45° to the shock propagation direction. Curviplanar features occurred in groups, with contrast indicating Moiré patterns, twins, and stacking faults or related structures; most were interpreted as fractures, possibly welded together with glass. Regions containing shock lamellae sets were present. Lamellae sets were uncommon at 12 GPa, but distributed every few microns at 24 GPa. Lamellae occurred in a spectrum of habits ranging from 35–1500 Å in thickness, from 35 Å upward in spacing, and from closely-packed parallel sets to networks of diverse orientations; some lamellae were not parallel-sided, but wedge-shaped with basal and \({{\{ 10\bar 13\} } \mathord{\left/ {\vphantom {{\{ 10\bar 13\} } {\{ 01\bar 13\} }}} \right. \kern-0em} {\{ 01\bar 13\} }}\) edges, Thick lamellae were connected to glassy veins, and the wedge-shaped type generally narrowed away from veins; they also subdivided and merged along their length. Lamellae were dominantly basal at 12 GPa, and at 24 GPa on \({{\{ 10\bar 12\} } \mathord{\left/ {\vphantom {{\{ 10\bar 12\} } {\{ 01\bar 12\} }}} \right. \kern-0em} {\{ 01\bar 12\} }}\) , with poles normal to the shock direction. We propose that they are not shear features, but rather glass-filled tensile fractures. Vitrification was widespread, especially at 24 GPa, apparently more so than in shock of as-grown material. This suggests that index of refraction is not an appropriate shock paleopiezometer, as it depends on the defect structure of the starting material. Neither lamella width nor spacing was correlated with shock stress; however, the criterion of multiple glass lamellae sets as indications of shock deformation and its intensity are consistent with our measurements. Dislocation density was lowered in lamellae-containing and glassy areas, possibly removed by nucleation of and absorption by lamellae. No high-pressure phases were observed. Based on the complete set of observed features, it appears that shock deformation in quartz is primarily brittle-melt deformation, with an important role played by hot, fluid silica.  相似文献   

9.
The morphological theory of Hartman and Perdok (1955, 1956) allows to deduce the character of a growth form {hkl} on the basis of structural data alone. Its application to the structure of whewellite leads to the identification of forms {100}, {010}, {021}, {011}, {12 \(\bar 1\) } and {121} which show during the growth a flat surface profile (flat forms F). These forms occur very frequently in the crystals we grew from pure aqueous solutions at supersaturation β≦1,90. Other forms, {001} and {10 \(\bar 1\) }, possibly show a double character (F or S, where S stays for related faces showing a stepped profile during the growth) according to the bonds assumed within some periodic bond chains (PBCs). Alternative ways of bonding water molecules lead to different structures of the same PBC. The different energy corresponding to these structures may explain the complex morphology of both natural and synthetic crystals grown at high β values.  相似文献   

10.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

11.
A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard \({\upalpha }\)-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The \(\hbox {c}_{0}/\hbox {a}_{0}\) values indicate an inter-tetrahedral angle roughly between \(120^{\mathrm{o}}\) and \(144^{\mathrm{o}}\), further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.  相似文献   

12.
Interaction of freshly precipitated silica gel with aqueous solutions was studied at laboratory batch experiments under ambient and near neutral pH-conditions. The overall process showed excellent reversibility: gel growth could be considered as an opposite process to dissolution and a linear rate law could be applied to experimental data. Depending on the used rate law form, the resulting rate constants were sensitive to errors in parameters/variables such as gel surface area, equilibrium constants, Si-fluxes, and reaction quotients. The application of an Integrated Exponential Model appeared to be the best approach for dissolution data evaluation. It yielded the rate constants k dissol ∼ (4.50 ± 0.68) × 10−12 and k growth ∼ (2.58 ± 0.39) × 10−9 mol m−2 s−1 for zero ionic strength. In contrast, a Differential Model gave best results for growth data modeling. It yielded the rate constants k dissol ∼ (1.14 ± 0.44) × 10−11 and k growth ∼ (6.08 ± 2.37) × 10−9 mol m−2 s−1 for higher ionic strength (I ∼ 0.04 to 0.11 mol L−1). The found silica gel solubility at zero ionic strength was somewhat lower than the generally accepted value. Based on the and standard Gibbs free energy of silica gel formation was calculated as and −850,318 ± 20 J mol−1, respectively. Activation energies for silica gel dissolution and growth were determined as and respectively. An universal value for growth of any silica polymorph, is not consistent with the value for silica gel growth, which questions the hypothesis about one unique activated complex controlling the silica polymorph growth.  相似文献   

13.
Shock recovery experiments on melilite samples in the pressure range from 11 to 50.5 GPa have been performed in order to examine the effects of shock waves on this material. The shocked samples were subsequently studied in the transmission electron microscope. All samples displayed the shock-induced amorphous areas, known as diaplectic glass. The amount of diaplectic melilite glass increased from a few percent at 11 GPa to about 85 percent at 50.5 GPa shock pressure. The shock waves also caused deformational effects as planar faults parallel to (001) and dislocations with a density in the order of 1010 cm?2. Regarding the present discussion on the origin and nature of diaplectic glass, diaplectic melilite glass is assumed to be the reversion product of a high-density phase produced in the shock front. Deformed melilites in Ca-Al-rich inclusions from chondritic meteorites studied so far do not contain diaplectic glass. It is assumed that the meteoritic melilites were hot (>1,000° C) and thus plastically deformable by shock waves of rather low amplitudes.  相似文献   

14.
The Slate Islands archipelago is believed to represent the central uplifted portion of a complex impact structure. Planar microstructures in quartz and feldspars and shock vitrification of rocks are the most common shock metamorphic features encountered. No diaplectic quartz was identified in the exposed rocks, but minor maskelynite is present. Shatter cones occur on all islands of the archipelago suggesting minimum pressures of 4 ± 2 GPa. The relative frequency of low index planar microstructures of specific, optically determined crystallographic orientations in quartz are correlated with results from shock barometric experiments to estimate peak shock pressures experienced by the exposed target rocks. In general, there is a decrease in shock pressure recorded in the target rocks from about 20–25 GPa in east-central Patterson Island to about 5–10 GPa at the western shore of this island and on Mortimer Island. The shock attenuation gradient is ∼4.5 GPa/km across this section of the island group. However, the shock attenuation has a roughly concentric plan only over the western part of the archipelago. There is no distinct shock center and there are other deviations from circularity. This is probably the result of: (1) the shock wave not having expanded from a point or spherical source because of the ∼1. 0 to 1.5 km size of the impactor; (2) differential movement of large target rock blocks during the central uplift and crater modification phases of the impact process. The orientation of planar deformation features in quartz appears to be independent of the shock wave direction suggesting that crystal structure exerts the primary control on microstructure development. Based on the results of XRD analyses, residual, post-impact temperatures were high enough to cause annealing of submicroscopic damage in shocked quartz. Received: 15 July 1997 / Accepted: 6 October 1997  相似文献   

15.
This paper deals with the incidence and geometry of lattice bending in calcite of naturally strained marble and possible relations in time to associated {01¯12} twinning, as revealed by microscopic examination with a universal stage. Microscopic technique and graphic treatment of data with a view to identifying the relation in time of bending to twinning, and possible glide mechanisms involved in the bending process are reviewed as a basis for present and subsequent investigation of this general topic.In most instances development of surviving thin e twins postdates bending of the host crystal (such twins everywhere are rationally oriented). Rarely (in contrast with experimental experience) some thin twins are slightly irrational (Le lamellae) and apparently developed in the final stages of bending. Thick twins (a few tens of microns wide) on the other hand rather commonly predate or are synchronous with bending.The geometry of bending (external rotation) — especially for rotation less than 25° —commonly is compatible with models (based on experimental experience) of simple translation in the strained domains. The commonest translation system so identified is on {10¯11}, with sense of shear, where recognizable, either negative or positive. Translation on {02¯21} is relatively rare. Unexpectedly there is rather strong but not conclusive evidence of translation on {0001} parallel to an a axis. This mechanism, hitherto never identified with certainty, is now here documented unequivocally in a crystal of calcite experimentally strained at 300° C, 5 kb.  相似文献   

16.
Interdiffusion of Fe and Mg in (Mg,Fe)O has been investigated experimentally under hydrous conditions. Single crystals of MgO in contact with (Mg0.73Fe0.27)O were annealed hydrothermally at 300 MPa between 1,000 and 1,250°C and using a Ni–NiO buffer. After electron microprobe analyses, the dependence of the interdiffusivity on Fe concentration was determined using a Boltzmann–Matano analysis. For a water fugacity of ∼300 MPa, the Fe–Mg interdiffusion coefficient in Fe x Mg1−x O with 0.01 ≤ x ≤ 0.25 can be described by with and C = −80 ± 10 kJ mol−1. For x = 0.1 and at 1,000°C, Fe–Mg interdiffusion is a factor of ∼4 faster under hydrous than under anhydrous conditions. This enhanced rate of interdiffusion is attributed to an increased concentration of metal vacancies resulting from the incorporation of hydrogen. Such water-induced enhancement of kinetics may have important implications for the rheological properties of the lower mantle.
Sylvie DemouchyEmail:
  相似文献   

17.
Along a NW-SE profile through the basement core, starting below the sedimentary unconformity and ending in the center of the nearly circular structure, the constituent quartz grains and their fluid inclusions exhibit the following characteristics:In the NW, fluid inclusions composed of CO2 and occasionally up to 50 Vol.% H2O occur along shock-induced planar elements following predominently {0 0 0 1} of coarse, largely unrecrystallized quartz grains. The planar elements are partly still open microcracks, partly they are healed, the fluid inclusions decorating the former sites of the cracks. Along these planar elements recrystallization into fine grained new quartz fabrics starts, this process increasing decidedly towards the southeast; nevertheless fluid inclusions are still retained. — Near and within the center of the dome the formerly coarse quartz grains are completely recrystallized to medium grained annealing fabrics, in which — surprizingly — the fluid inclusions have often retained their original positions relative to the old grains, so that their planar alignment now traverses the new grain boundaries. Here the enclosed fluid is pure CO2 as far as can be determined.On the basis of the homogenization temperatures of the fluid inclusions measured, and of independent petrologic geothermometry of the basement rocks near the center, the fluids trapped after the shock event had exhibited partial pressures of CO2 as high as 3 kbars at temperatures around 850° C. The derivation of these CO2-rich, post-shock fluids is either through release of older fluid inclusions from the lower crustal granulites affected by the catastrophic shattering event, or it is from a direct mantle source that might be genetically connected with the Vredefort event itself.  相似文献   

18.
Shock-induced melt veins in amphibolites from the Nördlinger Ries often have chemical compositions that are similar to bulk rock (i.e., basaltic), but there are other veins that are confined to chlorite-rich cracks that formed before the impact and these are poor in Ca and Na. Majoritic garnets within the shock veins show a broad chemical variation between three endmembers: (1) \({}^{\text{VIII}}{{\text{M}^{2+}}_3} {}^{\text{VI}}{\text{Al}}_{2} ({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\) (normal garnet, Grt), (2) \({}^{\text{VIII}}{{\text{M}^{2+}}_3} {}^{\text{VI}}[{\text{M}}^{2 + } ({\text{Si,Ti}})]({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\)  (majorite, Maj), and (3) \({}^{\text{VIII}}({{\text {Na} {\text M}^{2+}}_2}) {}^{\text{VI}}[ ({\text{Si,Ti}}){\text {Al}}]({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\) (Na-majorite50Grt50), whereby M2+ = Mg2+, Fe2+, Mn2+, Ca2+. In particular, we observed a broad variation in VI(Si,Ti) which ranges from 0.12 to 0.58 cations per formula unit (cpfu). All these majoritic garnets crystallized during shock pressure release at different ultrahigh pressures. Those with high VI(Si,Ti) (0.36–0.58 cpfu) formed at high pressures and temperatures from amphibole-rich melts, while majoritic garnets with lower VI(Si,Ti) of 0.12–0.27 cpfu formed at lower pressures and temperatures from chlorite-rich melts. Furthermore, majoritic garnets with intermediate values of VI(Si,Ti) (0.24–0.39) crystallized from melts with intermediate contents of Ca and Na. To the best of our knowledge the ‘MORB-type’ Ca–Na-rich majoritic garnets with maximum contents of 2.99 wt% Na2O and calculated crystallisation pressures of 16–18 GPa are the most extreme representatives ever found in terrestrial shocked materials. At the Ries, the duration of the initial contact and compression stage at the central location of impact is estimated to only ~ 0.1 s. We used a ~ 200-µm-thick shock-induced vein in a moderately shocked amphibolite to model its pressure–temperature–time (PTt) path. The graphic model manifests a peak temperature of ~ 2600 °C for the vein, continuum pressure lasting for ~ 0.02 s, a quench duration of ~ 0.02 s and a shock pulse of ~ 0.038 s. The small difference between the continuum pressure and the pressure of majoritic garnet crystallization underlines the usefulness of applying crystallisation pressures of majoritic garnets from metabasites for calculation of dynamic shock pressures of host rocks. Majoritic garnets of chlorite provenance, however, are not suitable for the determination of continuum pressure since they crystallized relatively late during shock release. An extraordinary glass- and majorite-bearing amphibole fragment in a shock-vein of one amphibolite documents the whole unloading path.  相似文献   

19.
The deformation behavior of calcite has been of longstanding interest. Through experiments on single crystals, deformation mechanisms were established such as mechanical twinning on in the positive sense and slip on and both in the negative sense. More recently it was observed that at higher temperatures slip in both senses becomes active and, based on slip line analysis, it was suggested that slip may occur. So far there had been no direct evidence for basal slip, which is the dominant system in dolomite. With new torsion experiments on calcite single crystals at 900 K and transmission electron microscopy, this study identifies slip unambiguously by direct imaging of dislocations and diffraction contrast analysis. Including this slip system in polycrystal plasticity simulations, enigmatic texture patterns observed in compression and torsion of calcite rocks at high temperature can now be explained, resolving a long-standing puzzle.  相似文献   

20.
This paper presents a design approach for strip footings upon glacier ice. Safety against ultimate limit state is proved by the geotechnical slip-line field solution by Prandtl. Glacier ice at 0°C can be modelled as purely cohesive material. Statistical evaluation of uniaxial compression tests with high strain rate revealed a mean value of the cohesion of 600 kPa and a characteristic value c k = 355 kPa (5% fractile). With a coefficient of variation V c = 0.3, the partial safety factor turns out to be γ c = 1.9. An approximate solution for estimating the creep settlement rate is presented to check the serviceability limit state: with the width b of the strip foundation, p the foundation pressure and for ice at 0°C. Experiences on Stubai glacier with grate shaped footings showed that creep settlements occurring per year due to maximum foundation pressures 250 kPa did not influence the operation and the maintenance of the cable cars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号