首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
岫岩陨石坑石英的冲击变质特征   总被引:3,自引:0,他引:3  
陈鸣 《矿物学报》2011,31(2):161-165
直径1.8 km的岫岩陨石坑位于辽宁省岫岩县苏子沟镇。坑区基岩为下元古界变质岩,由变粒岩、片麻岩、角闪岩、透闪岩和大理岩等岩石组成。坑内充填的撞击角砾岩石英颗粒呈现典型的冲击变质特征,其中包括沿着石英(0001)、{10 11}、{10 12}和{10 13}等方向发育的多组面状变形页理,以及石英发生相转变形成二氧化硅玻璃和柯石英。产出在二氧化硅玻璃中的针状和粒状柯石英表明从二氧化硅熔体中结晶形成。石英面状变形页理的发育特点限定冲击压力高达35 GPa,而二氧化硅熔体玻璃的存在表明冲击压力高达50 GPa。当压力释放和温度升高,二氧化硅熔体首先被形成。随着压力进一步释放到2.5~13 GPa,柯石英从二氧化硅熔体中结晶析出。岫岩陨石坑中石英面状变形页理和柯石英的存在提供了矿物冲击变质的诊断性证据。  相似文献   

2.
海南岛白沙陨击坑是一个直径约3.5km的环形镶边坳陷,组成陨击坑边缘的环形山连续性好,并具二元结构;下部是层理清晰的下白垩统紫红色砂岩,其中长石、石英等粒状矿物普遍受冲击破碎,发育有冲击微页理和击变玻璃,云母呈膝折状变形;上部是冲击角砾岩块杂乱堆垒成的溅射覆盖层,冲击角砾岩因冲击熔融结晶而貌似凝灰岩,但其中矿物成分十分复杂,含有镁橄榄石、镍纹石以及高密度石英等,岩石化学计算结果说明它是由砂岩变质而成的,与火成岩无关。坑内保留有回落角砾岩,常见到沿裂缝贯入的脉状角砾岩。在陨击坑内找到了重3.75kg的石陨石碎块,其中含碱硅镁石、陨铁大隅石、四方镍纹石、陨硫钙石和陨硫铁等陨石标型矿物,但不具球粒结构,CaO含量为9.19%,属富钙的无球粒陨石,认为是白沙陨石坑的成坑陨石。在陨击坑中找到富钙无球粒陨石,为陨击坑提供了最直接可靠的证据,也为石陨石撞击成坑提供了实例。  相似文献   

3.
岫岩陨石坑菱铁矿角砾岩的特征及成因   总被引:1,自引:0,他引:1  
岫岩陨石坑直径1.8 km,是一个简单碗形坑.通过在陨石坑中心实施的岩芯钻探,在被厚达107 m第四系湖相沉积物覆盖的撞击角砾岩单元顶部位置,发现少量“菱铁矿角砾岩”.这种菱铁矿角砾岩由菱铁矿微晶和矿物岩石碎屑组成.全岩碳同位素分析显示出较高的δδ13C异常,平均高达+13.76‰(V-PDB标准).菱铁矿形成时间约为37 ka,晚于撞击成坑事件(50 ka),也晚于湖泊相沉积物的沉积年龄(39~50 ka).在还原环境下,细菌分解有机质形成甲烷引起的碳同位素分馏是造成菱铁矿δ13C显著正异常的主要原因.显然,这些菱铁矿属于沉积成因.沉淀的菱铁矿胶结岩石和矿物碎屑形成菱铁矿角砾岩.  相似文献   

4.
陨石撞击构造研究是天文地质学研究的热点,但是缺乏典型的研究基地,海拉尔陨石坑的发现,无疑是一个重要补充。海拉尔陨石坑坑区基础岩石为晚侏罗世火山岩,区域自然地理为平缓丘陵山地草原,陨石坑呈封闭圆形,中间筒状突起显示冲击锥地貌,直径320m,坑底到坑缘最大高差10m。为了保护性研究,没有进行进行破坏性取样分析撞击岩石矿物,根据排他比较分析法,认为该坑唯有陨石撞击成因可以解释,并且具有最关键的冲击锥地貌特征。这是一个我国唯一保存完整的可供直观参观的陨石坑,估计该陨石坑年龄应该在100万年以上。  相似文献   

5.
海南白沙陨坑冲击变质岩岩石:地球化学特征初步研究   总被引:1,自引:0,他引:1  
海南白沙陨石冲击坑是中国境内发现的第—个保存良好、可供直观的陨坑.经野外考察和室内分析鉴定工作,进一步对白沙陨坑内击变岩的岩石一地球化学特征进行了研究,证明堆积在底盘原岩之上的貌似“火成岩”的块状、角砾岩岩石,是长石石英砂岩受冲击变质而成的击变岩.现简介如下.  相似文献   

6.
自80年代初新突变学说兴起以来,陨击坑及冲击变质作用研究,已成为国际地学界的重大课题之一.本文归纳了国内外的大量资料,对岩矿识别标志进行简介和评述.主要涉及标志有:1.陨石碎块;2.玻陨石和微玻陨石;3.击变者和熔石玻璃;4.击变矿物;5.击变玻璃;6.冲击变形组构;7.冲击变质石英的光学常数变化;8.冲击微页理:9.冲击变质石英的结构变化和变形;10.陨击角砾岩;11.震裂锥;12.瞬变岩.  相似文献   

7.
黄志诚  刘冠邦 《沉积学报》2014,32(3):503-509
太湖现代沉积物中发育大量各种形态的菱铁矿结核和褐铁矿结核。前者的矿物组成以菱铁矿为主,后者以针铁矿及纤铁矿为主,结核中混有陆源碎屑、黏土和大量各种水生植物碎片、细胞、花粉、植物蛋白石、少量动物介壳碎片以及大量细菌,表明铁质结核的形成与生物有关。菱铁矿结核形成于太湖现代沉积泥层较下部的封闭还原环境中,不同形状的菱铁矿结核的14C测年证明其形成于不同年代。褐铁矿结核形成于沉积泥层上部的氧化环境中,细菌起了关键作用。二者均为沉积成岩作用的产物。
  太湖的形成机制一直存在广泛争议,其中“陨石撞击说”最受关注。王鹤年等(2009)把前述的菱铁矿结核、褐铁矿结核、甚至黄土层中的钙结核当成“冲击坑溅射物”,并将之作为太湖形成于陨石撞击的确凿证据。陨石撞击地球是一种近乎瞬间的冲击变质作用,其相应的特征产物有:柯石英、斯石英,矿物中的变形页理和撞击玻璃(撞击岩)。迄今为止,在太湖及周边地区还没有发现石英的高压矿物相。观察到的石英砂岩中的石英变形纹是较低应力作用的产物,在沉积岩中常见,与冲击变质作用无关。太湖湖底平坦,水深不超过3 m,沉积层仅厚2 m,与陨石撞击造成的陨石坑地形特征不符。从沉积学的角度来看太湖形成的“洪水淹没说”更有说服力,不仅符合沉积物特征和沉积物年龄,也有考古学遗迹和史料的佐证。  相似文献   

8.
岫岩陨石坑位于辽宁省鞍山市岫岩满族自治县境内,是一个位于丘陵地区,保存状态良好的碗形陨石坑,在陨石坑分类中属于简单陨石坑。它系5万年前该区发生的一次小行星撞击事件中形成的一个撞击地质构造。陨石坑坐落在元古宇变质岩地层上,坑的底部堆积有厚度近百米的湖沼相沉积物和厚度188 m的撞击  相似文献   

9.
HED族陨石是太阳系最早的岩浆岩,对其进行亚型划分对认识其成分特征以及了解其母体岩浆演化和后期变质作用有重要意义。对西北非9块HED陨石进行了岩石结构及矿物组成、辉石Mg~#值、全岩Mg元素X射线分布和热变质程度等分析研究。结果表明,NWA 11600可划分为堆晶辉长岩型Eucrite,热变质程度为1型(最低);NWA 11602为玄武质非角砾岩型Eucrite,热变质6型(最高);NWA 11601为玄武质单矿碎屑角砾岩型Eucrite,热变质4型;NWA 11593、NWA 11594、NWA 11596和NWA 11597为玄武质复矿碎屑角砾岩型Eucrite,NWA 11598和NWA 11605为Howardite,不同角砾具有不同的热变质程度,分布在1~6型之间。NWA 11600冲击程度为S1,其余样品为S2。玄武岩的热变质程度远高于堆晶岩,热变质发生在冲击破碎之前,冲击并非导致热变质的原因。  相似文献   

10.
<正>岫岩陨石坑位于辽宁省鞍山市岫岩满族自治县境内,是一个位于丘陵地区,保存状态良好的碗形陨石坑,在陨石坑分类中属于简单陨石坑。它系5万年前该区发生的一次小行星撞击事件中形成的一个撞击地质构造。陨石坑坐落在元古宇变质岩地层上,坑的底部堆积有厚度近百米的湖沼相沉积物和厚度188 m的撞击  相似文献   

11.
New drill core data are provided which support earlier interpretations that the Kalkkop structure, a 600–630 m wide, near-circular feature south-southwest of Graaff-Reinet in the Eastern Cape Province of South Africa, is a meteorite impact crater. Shock metamorphosed clasts in suevitic crater fill and Re---Os isotope data of this breccia indicate the presence of a minor (0.05%) meteoritic component in the suevite. The new data come from a 1992 borehole, which transected the complete crater fill and extended from about 160 to 380 m depth into the sedimentary basement belonging to the Koonap Formation of the Beaufort Group (Karoo Supergroup). Dyke breccias were found in the otherwise coherent Beaufort Group sediments forming the floor to the Kalkkop Crater. Mostly narrow zones of different breccia types, including injections of lithic impact breccia, a possible pseudotachylite veinlet and cataclasite occur predominantly in an approximately 65 m wide zone below the crater floor, with a few other cataclasite occurrences found lower down in the basement. Stratigraphical crater constraints provide information for the depth-diameter scaling and breccia volumes associated with such small, bowl-shaped impact craters formed in sedimentary targets.U---Th series dating of limestone samples from near the top and the bottom of the crater sediment fill constraints the age of the Kalkkop impact event to about 250 ± 50 ka, similar to the age of the Pretoria Saltpan impact crater, also located in South Africa. The variety of different breccia types (polymict and monomict impact breccias; local formations of pseudotachylitic and cataclastic breccias) observed in the crater fill of the Kalkkop Crater indicates the need to carefully distinguish different breccia types in order to assess the respective importance of each formation.  相似文献   

12.
The Chicxulub and Ries impact craters were excavated from layered continental terrains that were composed of carbonate-bearing sedimentary sequences and underlying crystalline silicate basement materials. The Chicxulub and Ries impact events were sufficiently large to produce complex peak-ring impact craters. The walls of transient craters and excavation cavities, with diameters of 12-16 km for the Ries and 90-100 km for Chicxulub, collapsed to form final crater diameters of ∼24 and ∼180 km, respectively. Debris from both the sedimentary and crystalline layers was ejected during crater formation, but the bulk of the melting occurred at depth, in the silicate basement. The volume of melt and proportion of melt among shock-metamorphosed debris was far larger at Chicxulub, producing a central melt sheet ∼3 km in depth. The central melt sheet was covered with melt-bearing polymict breccias and, at the Ries, similar breccias (crater suevites) filled the central cavity. Also at the Ries (and presumably at Chicxulub), large hill-size megablocks of crystalline basement material were deposited near the transient crater rim. Blocks and megablocks of sedimentary lithologies were ejected into the modification zone between the peak ring and final crater rim, while additional material was slumping inward during crater growth, and buried beneath a fallout deposit of melt-bearing polymict breccias. The melt and surviving clasts in the breccias are dominantly derived from the deeper, basement lithologies. At greater distances, however, the ejecta is dominated by near-surface sedimentary lithologies, large blocks of which landed with such high energy that they scoured and eroded the pre-existing surface. The excavation and ejecta pattern produced lithological and chemical variations with radial distance from the crater centers that evolve from basement components near the crater centers to sedimentary components far from the crater centers. In addition, carbonate (and anhydrite in the case of Chicxulub) was vaporized, producing environmentally active gases. The vaporized volume produced by the Ries impact event was too small to dramatically alter the evolution of life, but the vaporized volume produced by the Chicxulub impact event is probably a key factor in the Cretaceous-Tertiary boundary mass extinction event.  相似文献   

13.
Suevites are impact breccias with a montmorillonitic matrix that contains shocked and unshocked mineral and rock fragments from the crystalline basement, glass inclusions and a small amount of sedimentary clasts. Data are given of the modal composition of fall-out suevites (deposited at isolated points around the crater) and crater suevite (forming a layer below post-impact lake sediments in the crater cavity). Fall-out suevites contain aerodynamically shaped bombs which are absent in crater suevite. Taking into account not only large glass fragments and bombs, but also the finer fractions, the glass content of fall-out and crater suevites amounts to 47 and 29 vol%, respectively. Crystalline clasts in suevites consist of all igneous and metamorphic rock types that constitute the local basement which consists of an upper layer of igneous rocks (mainly granites) and a lower series of gneisses and amphibolite. Based on a collection of 1 200 clasts from 13 suevite occurrences the average crystalline clast population of suevites was determined. Suevites contain on the average 46 % igneous and 54 % metamorphic clasts. In constrast, weakly shocked and unshocked crystalline ejecta of the Ries structure consist of 82 % igneous and 18 % metamorphic rocks. From 138 analyses of crystalline rock samples average compositions of the major rock types were calculated. Comparison of these averages with the average glass composition leads to the conclusion that suevite glasses were formed by shock melting of gneisses in deeper levels of the basement. Suevite matrices consist in most cases of 80 to 90 % montmorillonite, in special cases of celadonite. Chemical analyses are given of some matrices and montmorillonite formulas calculated. It is supposed that montmorillonite was formed by early hydrothermal alteration of rock flour or fine glass particles. In the latter case the original glass content of suevites was higher than at present. Of all ejecta from the Ries crater only crystalline rocks contained in suevites occur in all stages of shock metamorphism up to complete fusion. The overwhelming majority of the ejecta from the sedimentary sequence (about 580 m) show no indications of shock pressures above 10 GPa. The same holds true for crystalline megablocks and breccias around the crater which consist mainly of granites from upper levels of the basement. We assume that the Ries impact can be approximated by a deep-burst model: The projectile penetrated through the sedimentary cover into the basement in such a way that the highest pressures and temperatures developed within the gneiss complex below the upper, predominately granitic layer and that rocks of the sedimentary sequence experienced weak shock compression. Numerical data are given for such a model of the Ries impact on transient crater geometry and volumes of vaporized, melted, shocked and excavated rocks. Fall-out suevites are supposed to have been lifted from the central zone by an expanding plume of vaporized rocks and deposited as fluidized turbulent masses outside the crater whereas the main mass of crater suevite was not removed from the crater cavity.  相似文献   

14.
Seven petrographic thin sections of lunar rock sample 14321, ‘Big Bertha’, have been examined. It is a complex rock incorporating diverse lithic and single crystal fragments and represents a sampling of the heterogeneous Fra Mauro formation, considered by the writers to be lithified debris from the Imbrium impact event. Electron probe microanalysis and microscopic study of textures reveal the assembly history of this breccia which in turn allows some interpretation of the nature of the pre-Imbrium crust and the effect of the Imbrium impact and the subsequent transportation to the Apollo 14 site. The present-day polymict breccia 14321 is composed of basaltic clasts originating from the fragmentation of a single or closely related set of lava cooling units, a set of fragmental clasts designated as microbreccia 3 (themselves polymict microbreccias), and a light colored matrix which formed rock 14321 by cementing the two major groups of clasts. The light colored matrix material is derived from the fragmentation and mutual abrasion of the basalt and microbreccia 3. On the basis of consistent textural relations two older sets of microbreccias have been identified within microbreccia 3. Microbreccia 1 clasts are well-rounded, relatively light colored, and noritic. They are always completely enclosed within microbreccia 3, most often forming the central cores of rounded accretionary lapilli structures which we have designated as microbreccia 2. Microbreccias 1, 2, 3, and macrobreccia 14321 represent a chronological series of fragmentation and lithification events. Each of these events involved some thermal and/or shock metamorphism as evidenced by mineralogical and textural criteria, and the chronological order of formation of the breccias also corresponds to a decreasing intensity of associated thermal effects. The petrology and mineralogy of 14321 are described in detail in this paper. A more general interpretation of the combined petrographic and chemical data is given in Duncanet al. (1975a).  相似文献   

15.
NWA2268 is a polymict eucrite discovered in the Sahara, at southwest Algeria, close to the region of Tindouf. This meteorite weighs 65 g and presents a thin black fusion crust. The rock is fine- to medium-grained breccia and contains mineral fragments of plagioclases, pyroxenes, spinel, olivine and silica. The rock contains some basaltic fragments with sub-ophitic or cumulative textures, constituted by plagioclases and exsolved pigeonite. Pyroxferroite grains are present and locally destabilised in an association of hedenbergite, fayalite and silica. It also presents unequilibrated eucritic clast with heterogeneous pyroxenes and plagioclases compositions. Pyroxenes in the all of the other clasts have equilibrated composition, with exolved pigeonites with augite lamellaes. This polymict eucrite contains also partially devitrified glass that represents impact melts linked to impact event. None recrystallization of this glass confirms a lack of post-brecciation metamorphism. Diogenitic fragments are less abundant than 10 %. The oxygen isotopic composition of NWA2268 is Δ17O (?0.43). This meteorite is interpreted as belonging to the HED group attributed to the 4-Vesta asteroid.  相似文献   

16.
The circular structure at Mohar (Dhala structure) in the western part of Bundelkhand Gneissic Complex, is marked by a prominent outlier of Kaimur sediments surrounded by low lying concentric sequence of sediments of Dhala Formation and basement granite breccia. This has been interpreted as a volcanic eruption related cauldron structure and meteoritic impact crater structure by various authors, on the basis of absence or presence of shock indicators in the clasts of a rhyolite-like rock that crops out scantily in the north western part of the structure. During the course of extensive sub-surface uranium exploration in this structure, the geoscientists of Atomic Minerals Directorate for Exploration and Research observed unequivocal and rampant evidences of shock metamorphic features for the first time in drill core samples of basement granitoids which constitute the bed rock for the rhyolite-like melt breccia, which overlies it. Published data of shock metamorphic features from this area are largely confined to the surface samples of the rhyolite-like melt rock, exposed in sparse outcrops. The shock metamorphic features recorded in the sub-surface granitoid bed rock samples during the present study, comprise planar deformation features (PDF) in quartz, feldspar, apatite and zircon, toasted, diaplectic, ladder-textured feldspars, selectively shock-melted feldspars and melt-veined quartz. The shock metamorphic features recorded in surface and sub-surface samples of the melt rock include ballen quartz, PDF in quartz clasts, toasted and diaplectic feldspar clasts shocked basic rock fragments with isotropised feldspars. Both the shocked bedrock granitoid and the melt rock bear uncharacteristic geochemical signatures with elevated K2O, MgO and depleted CaO. The study also observes that the melt breccia overlying the granitoid bedrock also occurs as pocket-like patches at various depths within the granitoids. Thus, the present findings have helped in understanding the attributes of the basement granitoid and associated melt breccia, thereby linking the genesis of the latter by selective melting of the former, due to the process of impact. It reinforces the already propounded theory of impact as the likely cause for the development of the structure in the basement Bundelkhand granitoid that was later filled by sediments standing out presently as a mesa.  相似文献   

17.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   

18.
Shock veins up to 1.1 mm thick were found within non-porous lithic clasts from suevite breccia of the Nördlinger Ries impact structure. These veins were studied by optical microscopy in transmitted and reflected light and by scanning electron microscopy. In shocked amphibolites, two types of Ca-rich majorite occur within and adjacent to the veins. The first type crystallized from shock-induced melts within the veins. Si contents of these majorites suggest dynamic pressure of ~15–17 GPa, implying minimum temperatures in the range of ~2,150–2,230°C. The second type of majorite was formed adjacent to the shock veins within pargasitic hornblende. This majorite contains significant amounts of H2O (0.7–0.9 wt%). Based on the textural setting, the shrinkage cracks and the chemical compositions of both phases, a solid-state mechanism is deduced for the hornblende to majorite phase transition. Both genetic types of Ca-rich majorite are described for the first time from a terrestrial impact crater. Along with stishovite, majorite constitutes the second silicate mineral displaying sixfold coordination of Si at Ries. Using micro-Raman spectroscopy, jadeite + coesite and jadeite + grossular were identified within local melt glasses of alkali feldspar and plagioclase composition, respectively. Stishovite aggregates, produced by solid-state reaction, along with shock-induced high-pressure melt glasses of almandine composition were also detected in shock veins of a garnet-cordierite-sillimanite restite. The quenched, homogeneous almandine glasses point to melting temperatures of more than ~2,500°C for the veins. Our findings demonstrate that terrestrial shock veins can give valuable information on shock-induced mineral transformations and transient high pressures of host rocks during a natural impact event.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号