首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Along the northern coasts of Ellesmere Island, at least two glaciations are recognized on the basis of morphostratigraphy. The early Holocene ice limit lay only 5 to 60 km beyond present glaciers due to constraints imposed by aridity and calving. This limited ice advance likely extended beyond any Wisconsinan glacial limit. Marine limits established during, retreat from the last glacial maximum reach 148 m a.s.l. In contrast, earlier, more extensive glaciations inundated the coastlines and are associated with former relative sea levels now reaching 286 m a.s.l. Correlation of these pre-Wisconsinan glaciations is based upon amino acid ratios. However, this approach is severely limited by slow rates of racemization, a lack of in situ samples, and complex thermal histories owing to multiple transgressions. Models favoring extensive regional glaciation of northern Ellesmere Island and Greenland must include a glacioclimatic scenario recognizing the constraint that aridity places on glaciation. We suggest that the large ice volume associated with the oldest recognized glaciation relates to a period of reduced sea-ice cover, possibly >400,000 BP, and may correlate with an interglacial stage of the marine oxygen isotope record.  相似文献   

2.
A glacial chronology for northern East Greenland   总被引:3,自引:1,他引:3  
In East Greenland between 75 and 76N three different glacial episodes can be identified: (1) An early period with more or less total ice cover and in which the ice reached out onto the continental shelf - the Kap Mackenzie stadial; (2) a period with glaciation of intermediate extent, when nunataks and a few ice-free lowland areas existed - the Muschelbjerg stadial; and (3) a final period with glacial advance, when the glaciers were mainly restricted to fjords and larger valleys - the Nanok stadial. Each of these stadials was followed by a period with general deglaciation, from which marine shell-bearing sediments have been found; the Hochstetter Forland interstadial, the Peters Bugt interstadial and the Flandrian interglacial, respectively. The marine limit sank with each of these ice-free periods; probably an isostatic effect of the decreasing amplitude of the glacial advances. The deglaciation after the Nanok stadial began about 9500 B.P. It is not known for certain when this glacial advance started, but 13,000 B.P. or earlier is suggested. According to 14C datings the Peters Bugt interstadial dates from at least 45,000 B.P. and the Hochstetter Forland interstadial from at least 49,000 B.P. However, amino acid analyses indicate a distinct age difference between these two interstadial, and Th/U datings give age estimates of 70,000–115,000 B.P. for the Hochstetter Forland interstadial, which therefore seems to be of Early Weichselian age although a pre-Weichselian age cannot be excluded. The same applies to the preceding Kap Mackenzie stadial. The correspondence between the present glacial chronology and similar tripartite ones on Bafffin Island, Ellesmere Island and Svalbard seems reasonably good  相似文献   

3.
Philips Inlet and Wootton Peninsula are located at 82°N and 85°W on the northwest coast of Ellesmere Island and are composed of three bedrock controlled zones: (1) 900 m undulating plateau dissected by fiords; (2) a deeply fretted cirque terrain >1200m; (3) a 300m plateau bounded by coastal cliffs. Each zone contains different glacier morphologies and these control glacigenic sediment and landform assemblages. The extent of the last glaciation is mapped using the distribution of moraines, kames, meltwater channels and glacimarine sediments. Glaciers advanced on average <10 km from their present margins and many piedmont lobes coalesced and floated in the sea. Morainal banks were deposited at the grounding lines of floating glaciers, and where debris-charged basal ice occurred, subaqueous fans were deposited upon deglaciation. Marine shells dating 20.2 ka BP (<2km from present ice margin) and 14.9ka BP (from a morainal bank) document full glacial marine fauna. Thirty-three radiocarbon dates document glacier retreat patterns and are used to reconstruct the postglacial sea level history (glacioisostatic rebound pattern). An equidistant shoreline diagram is constructed using the 8.5ka BP shoreline as a guide. Tilts from 0.73-0.85m/km are calculated for this shoreline. Using two firm control points and tilts from elsewhere on northern Ellesmere Island, the 10.1 ka BP (full glacial) marine limit descends from 117m as at the fiord heads to 63 m asl at the north coast. Deglaciation started with a pronounced calving phase throughout the field area between 10.1 and 7.8ka BP. This chronology is similar to that from northeast Ellesmere Island and attests to an early Holocene warming trend recorded in high arctic ice cores. A maximum lag of 2.1 ka exists between the field area and locations to the south of the Grant Land Mountains suggesting differences in glacioclimatic regimes on either side of the mountain range. Persistent reconstructions of all-pervasive ice sheets for the last glaciation of the area are obsolete and should be abandoned.  相似文献   

4.
Calibrated radiocarbon dates of organic matter below and above till of the last (Fraser) glaciation provide limiting ages that constrain the chronology and duration of the last advance–retreat cycle of the Puget Lobe in the central and southeastern Puget Lowland. Seven dates for wood near the top of a thick proglacial delta have a weighted mean age of 17,420 ± 90 cal yr B.P., which is the closest limiting age for arrival of the glacier near the latitude of Seattle. A time–distance curve constructed along a flowline extending south from southwestern British Columbia to the central Puget Lowland implies an average glacier advance rate of ca. 135 m/yr. The glacier terminus reached its southernmost limit ca. 16,950 yr ago and likely remained there for ca. 100 yr. In the vicinity of Seattle, where the glacier reached a maximum thickness of 1000 m, ice covered the landscape for ca. 1020 yr. Postglacial dates constraining the timing of ice retreat in the central lowland are as old as 16,420 cal yr B.P. and show that the terminus had retreated to the northern limit of the lowland within three to four centuries after the glacial maximum. The average rate of retreat was about twice the rate of advance and was enhanced by rapid calving recession along flowline sectors where the glacier front crossed deep proglacial lakes.  相似文献   

5.
The evidence for the extent and timing of Weichselian glaciation in Arctic regions shows that: (1) there were no major marine ice domes in the Arctic at 18,000 B.P. but that glaciers were relatively limited in extent; (2) there were no extensive ice shelves at 18,000 B.P. as envisaged by Hughes, Denton & Grosswald(1977); (3) the major periods of glacier expansion were between 125,000 and 80,000 B.P., just prior to 45,000 B.P., and between 11,000 and 8,000 B.P., and thus that glacier fluctuations at the southern margins of the Laurentide and Fennoscandian ice sheets were out of phase with those in the Arctic which advanced during southern interstadials. Phases of glacier advance in the Atlantic sector of the Arctic can be identified in deep sea cores by the peaks in concentration of iceberg-dropped detritus and an increase in sedimentation rates, which are highest when sub-polar water penetrates to the north. The key to the temporal pattern of Arctic glaciation and its association with oceanic changes is given by the intimate association of present-day Arctic glacierisation with the two major low pressure troughs which penetrate the Arctic in the Atlantic sector and in Baffin Bay. The chronology of glaciation in the Atlantic sector is associated with the activity of these troughs and the related oceanic circulation. Cooling of the Arctic due to reduction in solar radiation at the end of the last interglacial, when the pack ice lay north of 75d?N in the Atlantic, produced ideal conditions for Arctic glacier growth, with moisture transported by a strong cyclonic flux into a cooling Arctic from a strong North Atlantic Drift current. A positive feedback loop involving ocean and atmospheric circulation and pack ice, caused movement of the polar front to the south, thus slowly cutting off the supply of moisture to the Arctic. Further cooling at 75,000 B.P. caused a rapid extension of the polar front south of 45d?N, effectively cut off the northward movement of surface currents on the North Atlantic, and produced a strong zonal oceanic and atmospheric circulation which starved Arctic glaciers of nourishment and caused their retreat, and initiated rapid build up of the Fennoscandian and Laurentide ice sheets. Subsequent extensions of Arctic glaciers were associated with limited northward movement of sub-polar water and associated Atlantic depressions. The expansion of glaciers within the Arctic between 11,000 and 8,000 B.P. was associated with the first and diachronous penetration of moisture into a still cool Arctic during decay of the two great ice sheets.  相似文献   

6.
MIS 3时期青藏高原东南部稻城古冰帽冰进事件研究   总被引:1,自引:1,他引:0  
深海氧同位素3阶段(Marine Isotope Stage 3,MIS 3)是全球气候演化过程中特殊的时期,对深入认识区域古气候、古环境演变具有重要意义。青藏高原东南部稻城古冰帽是第四纪冰川作用历史和古气候研究的理想区域,许多学者在该区进行了冰川地貌学和年代学研究。目前,该区域在MIS 3阶段是否存在冰川前进事件仍存在争论。现着重从洞穴石笋、高原冰芯、海洋沉积、古湖孢粉等记录来总结我国MIS 3阶段的气候环境状况,并搜集高原及周边地区MIS 3阶段冰进事件的记录,结合稻城古冰帽区已发表的MIS 3阶段的年代数据来探讨稻城古冰帽区MIS 3阶段的冰川前进的可能性。结果表明:稻城古冰帽区MIS 3阶段(43~53 ka)发生了大规模冰进事件,这可能是由于该冰帽区处于相对冷湿环境且受到了西南季风的影响。本研究可为区域气候重建与环境演变提供新的依据。  相似文献   

7.
Superimposed glacial and marine sediment exposed in coastal cliffs on Brøggerhalvøya, west Spitsbergen, contain four emergence cycles (episodes D, C, B, and A) that are related to glacial-isostatic depression and subsequent recovery of the crust. Tills are found in episodes C and B; in each case glaciation began with an advance of local glaciers, followed by regional glaciation. The marine transgression following episode C deglaciation reached 70 to 80 m above sea level. Glacial-marine and sublittoral sands within episode C contain a diverse and abundant microfauna requiring marine conditions more favorable than during the Holocene. We define this interval as the Leinstranda Interglacial. Based on the fauna, sedimentology and geochronology (radiocarbon, amino acid racemization, and uranium-series disequilibrium) we conclude that the Leinstranda Interglacial occurred during isotope substage 5e. Episode B deglaciation occurred late in isotope stage 5 (c. 70 ± 10 ka ago), and was followed by a marine transgression to about 50 m above sea level. The associated foraminifera, mollusca, and vertebrate fauna require seasonally ice-free conditions similar to those of the Holocene, but less ameliorated than during the Leinstranda Interglacial. A significant influx of Atlantic water into the Norwegian Sea, augmented by a local insolation maximum late in isotope stage 5, are required to produce shallow-water conditions similar to those of the Holocene. There is no evidence for major glacial activity during the Middle Weichselian (isotope stages 4 and 3), and we conclude that ice margins were not significantly different from those of the late Weichselian, but the record for this interval is scant. The extent of ice at the Late Weichselian maximum was less than during either of the two preceding episodes (B or C). Late Weichselian deglaciation (episode A) began prior to 13 ka B.P. Oceanic and atmospheric circulation patterns conducive to large-scale glaciation of western Spitsbergen are not well understood, but those patterns that prevailed during isotope stages 4,3, 2, and 1 did not produce a major glacial advance along this coast.  相似文献   

8.
Large glaciers descended western valleys of the Olympic Mountains six times during the last (Wisconsin) glaciation, terminating in the Pacific coastal lowlands. The glaciers constructed extensive landforms and thick stratigraphic sequences, which commonly contain wood and other organic detritus. The organic material, coupled with stratigraphic data, provides a detailed radiocarbon chronology of late Pleistocene ice-margin fluctuations. The early Wisconsin Lyman Rapids advance, which terminated prior to ca. 54,000 14C yr B.P., represented the most extensive ice cover. Subsequent glacier expansions included the Hoh Oxbow 1 advance, which commenced between ca. 42,000 and 35,000 14C yr B.P.; the Hoh Oxbow 2 advance, ca. 30,800 to 26,300 14C yr B.P.; the Hoh Oxbow 3 advance, ca. 22,000–19,300 14C yr B.P.; the Twin Creeks 1 advance, 19,100–18,300 14C yr B.P.; and the subsequent, undated Twin Creeks 2 advance. The Hoh Oxbow 2 advance represents the greatest ice extent of the last 50,000 yr, with the glacier extending 22 km further downvalley than during the Twin Creeks 1 advance, which is correlative with the global last glacial maximum. Local pollen data indicate intensified summer cooling during successive stadial events. Because ice extent was diminished during colder stadial events, precipitation—not summer temperature—influenced the magnitude of glaciation most strongly. Regional aridity, independently documented by extensive pollen evidence, limited ice extent during the last glacial maximum. The timing of glacier advances suggests causal links with North Atlantic Bond cycles and Heinrich events.  相似文献   

9.
浦庆余 《第四纪研究》1991,11(3):245-259
末次冰期我国西部的冰川长度比现代冰川长2—5倍,雪线低300—1080m;东部多年冻土区南界在33°20′—33°40′N,青藏高原多年冻土区东北部的下界在海拔2200—2600m 处;黄、东海海平面下降130—155m;经向环流加强,北方冷空气增强。末次冰期以后冰川阶段性退缩,多年冻土区阶段性缩小,海平面间歇性上升;8000—6000aB.P.为高温期,出现2—5m 高海面,5600—5000aB.P.气温短暂下降,海平面突然回落,冰川有所前进;3000aB.P.的新冰期和15—19世纪的小冰期,气候、冰川和海平面都有显著变化。哺乳动物的绝灭和迁徙是自然和人为双重影响的结果。这些变化都是全球变化的表现。  相似文献   

10.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

11.
The Upper Garonne Basin included the largest glacial system in the Pyrenees during the last glacial cycle. Within the long-term glacial retreat during Termination-1 (T-1), glacier fluctuations left geomorphic evidence in the area. However, the chronology of T-1 glacial oscillations on the northern slopes of the Central Pyrenees is still poorly constrained. Here, we introduce new geomorphological observations and a 12-sample dataset of 10Be cosmic-ray exposure ages from the Ruda Valley. This U-shaped valley, surrounded by peaks exceeding 2800 m a.s.l., includes a sequence of moraines and polished surfaces that enabled a reconstruction of the chronology of the last deglaciation. Following the maximum ice extent, warmer conditions prevailing at ~15–14 ka, during the Bølling–Allerød (B–A) Interstadial, favoured glacial retreat in the Ruda Valley. Within the B–A, glaciers experienced two phases of advance/stillstand with moraine formation at 13.5 and 13.0 ka. During the early Younger Dryas (YD), glacial retreat exposed the highest surfaces of the Saboredo Cirque (~2300–2350 m) at 12.7 ka. Small glaciers persisted only inside the highest cirques (~2470 m), such as in Sendrosa Cirque, with moraines stabilising at 12.6 ka. The results of this work present the most complete chronology for Pyrenean glacial oscillations from the B–A to the YD.  相似文献   

12.
This paper presents a revised glacial chronology for the Lahul Himalaya and provides the most detailed reconstruction of former glacier extents in the western Himalayas published to date. On the basis of detailed geomorphological mapping, morphostratigraphy, and absolute and relative dating, three glaciations and two glacial advances are constrained. The oldest glaciation (Chandra glacial stage) is represented by glacially eroded benches and drumlins (the first to be described from the Himalaya) at altitudes of >4300 m and indicates glaciation on a landscape of broad valleys that had minimal fluvial incision. The second glaciation (Batal glacial stage) is represented by highly weathered and disssected lateral moraines and drumlins representing two phases of glaciation within the Batal glacial stage (Batal I and Batal II). The Batal stage was an extensive valley glaciation interrupted by a readvance that produced superimposed bedforms. Optically stimulated luminescence (OSL) dating, indicates that glaciers probably started to retreat between 43400 ± 10300 and 36900 ± 8400 yr ago during the Batal stage. The Batal stage may be equivalent to marine Oxygen Isotope Stage 4 and early Oxygen Isotope Stage 3. The third glaciation (Kulti glacial stage), is represented by well-preserved moraines in the main tributary valleys that formed due to a less-extensive valley glaciation when ice advanced no more than 12 km from present ice margins. On the basis of an OSL age for deltaic sands and gravels that underlie tills of Kulti age, the Kulti glaciation is younger than 36900 ± 8400 yr ago. The development of peat bogs, having a basal age of 9160 ± 70 14C yr BP possibly represents a phase of climatic amelioration coincident with post-Kulti deglaciation. The Kulti glaciation, therefore, is probably equivalent to all or parts of late Oxygen Isotope Stage 3, Stage 2 and early Stage 1. Two minor advances (Sonapani I and II) are represented by small sharp-crested moraines within a few kilometres of glacier termini. On the basis of relative weathering, the Sonapani advance is possibly of early mid-Holocene age, whereas the Sonapani II advance is historical. The change in style and extent of glaciation is attributed to topographic controls produced by fluvial incision and by increasing aridity during the Quaternary. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The popular concept of a Late Weichselian ice sheet covering the Barents Shelf and confluent with the Scandinavian and Russian ice sheets is based primarily on the 6500 B.P. isobase which rises to the east over Spitsbergen, and to the west over Franz Joseph Land. Analysis of uplift curves from the Spitsbergen archipelago shows, however, that the strongest early Holocene uplift occurs over northeastern Spitsbergen and eastern Nordaustlandet, falling both to east and west, and that the centre of uplift migrates to the southeast during the Holocene. Direct evidence of glacier fluctuation indicates an important Billefjorden Stage of glaciation at about 11,000 to 10,000 B.P., part of whose extent can be defined by moraines and by abrupt changes in the marine limit. The dominant ice masses of the Billefjorden Stage seem to have formed over eastern Spitsbergen, Edgeøya, Barentsøya and southern Hinlopenstretet, and it is the decay of this ice mass which is primarily responsible for the pattern of early Holocene uplift. Stratigraphic evidence suggests the absence of an important glacial event at 18,000–20,000 B.P., but an important phase of Spitsbergen-centred glaciation at about 40,000 B.P., and a glacial phase at 80,000–120,000 B.P. It is suggested that many raised beach sequences outside the Billefjorden readvance show an upper sequence related to deglaciation at about 40,000 B.P., and a lower, Holocene sequence related to decay of the Billefjorden ice. The anomalous pattern of late Holocene uplift may be related to restrained rebound produced by regeneration of ice on the main islands of the archipelago and unrestrained rebound on Hopen and Kong Karls Land, which were incapable of sustaining large ice masses of their own. A pattern of LateGlacial climatic circulation which may have produced ice masses on the east coast of Spitsbergen, west coast of Novaya Zemlya and north coast of Russia is suggested. It is also suggested that this pattern of glaciation produced features which have been wrongly interpreted as evidence of a Barents ice sheet.  相似文献   

14.
The study of glacial evidence in the Gran Sasso Massif of the Central Apennines, Italy, has allowed the last maximum advance and the subsequent stadial phases to be dated and the mean annual temperature and quantity of precipitation in the form of snow to be assessed for a number of periods. The glaciers probably reached their maximum extension (Campo Imperatore Stade) ca. 22,60014C yr B.P. and started to retreat ca. 21,000 yr B.P., leaving behind three recessional moraines. After a first interstade (Fornaca Interstade), the Fontari Stade appears to have taken place shortly after 16,000 yr ago. Ca. 15,000 yr ago the glacier started retreating, leaving behind four more recessional moraines. An interstade (Venacquaro Interstade) preceded the Mount Aquila Stade, datable at ca. 11,000 yr B.P. A strong correlation is evident between the glacial phases on land and the isotopic variations in cores from the Tyrrhenian Sea.  相似文献   

15.
中国西部末次冰期以来冰川、环境及其变化   总被引:6,自引:0,他引:6  
郑本兴 《第四纪研究》1990,10(2):101-110
晚更新世以来,由于青藏高原及其周围山地的上升,中国西部的气候愈来愈干冷,冰川发育受到抑制。末次冰期最盛时,雪线比今日低300—1500m,古冰缘下限比今日低300—1400m,高山带的气温比今日低3—7℃,高原外围地区低8—10℃。青藏高原从13000aB.P.开始气候变暖,6000aB.P.高温期时冰川强烈退缩或消失,4000—3000aB.P.气候又再次变冷进入全新世新冰期和现代小冰期。目前气候又开始变暖,大部冰川又转入后退时期。  相似文献   

16.
Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~ 1000 yr, and underwent two stages of retreat separated by a short period of expansion.  相似文献   

17.
Evidence is presented for a more extensive ice cover over South Georgia, the South Orkney Islands, the South Shetland Islands, and the tip of the Antarctic Peninsula. Ice extended across the adjacent submarine shelves to a depth of 200 m below present sea level. Troughs cut into the submarine shelves by ice streams or outlet glaciers and ice-scoured features on the shelf areas suggest that the ice caps were warm-based. The South Shetland Islands appear not to have been overrun by continental ice. Geomorphological evidence in two island groups suggests that the maximum ice cover, which was responsible for the bulk of glacial erosion, predates at least one full glaciation. Subsequently there was a marine interval and then a glaciation which overran all of the lowlying peninsulas. The Falkland Islands, only 2° of latitude north of South Georgia, were never covered by an ice cap and supported only a few slightly enlarged cirque glaciers. This suggests that the major oceanographic and atmospheric boundary represented by the Antarctic Convergence, which is presently situated between the Falkland Islands and South Georgia, has remained in a similar position throughout the glacial age. Its position is probably bathymetrically controlled.  相似文献   

18.
The timing of the local last glacial maximum in the mountains of the Northern Iberian Peninsula is not synchronous with the global Last Glacial Maximum (LGM) probably due to the marginal position of the Northern Iberian Peninsula within the European continent. The study of a Cantabrian massif, the Asón platform and summits, provides new data on the extent and timing of the local last glaciation. Here we can place the last maximal extent of glaciers during Early Würm, according to OSL dating on till samples. The main glaciers developed at least between 78-65 ka BP, well centred on MIS 4 and even the transition to MIS 5. The erosive efficacy of these glaciers decreased later, ca. 45–40 ka BP, until they abruptly disappeared from the edges of the massif. A new ice advance left well-defined moraines at the edges of the massif’s internal depressions, indicating a tongue disjunction phase with two glacier sub-stages, probably one at the beginning of the cooling ca. 27–25 ka BP, followed by a retreat and another glacial advance ca. 21–18 ka BP. After these episodes the glaciers disappeared from the Asón Mountains and only some residual glaciers were formed that may be related to the LGM.  相似文献   

19.
《Quaternary Research》1987,27(1):41-50
Radiocarbon-dated whalebones from raised beaches record a relative sea-level history for Bröggerhalvöya, western Spitsbergen that suggest a two-step deglaciation on Svalbard at the end of the late Weichselian glaciation. The late Weichselian marine limit was reached at about 13,000 yr B.P. and was followed by relatively slow emergence until about 10,000 yr B.P. either in response to ice unloading in the Barents Sea, initial retreat of local fjord glaciers, or some combination of the two. Rare whale skeletons dating between 13,000 and 10,000 yr B.P. indicate that the Norwegian Sea was at least seasonally ice free during that interval. Deglaciation of Spitsbergen is recorded by the rapid emergence of Bröggerhalvöya after 10,000 yr B.P. This was followed by a transgression during the mid-Holocene, here named the Talavera Transgression, and another in modern times. Raised beach morphologies suggest striking differences in nearshore depositional processes before and after 10,000 yr B.P. that are probably related to changes in the rate of uplift and in sea-ice conditions.  相似文献   

20.
During the Itkillik Glaciation the Brooks Range supported an extensive mountain-glacier complex that extended for 750 km between 141° and 158°W longitude. Individual ice streams and piedmont lobes flowed as much as 50 km beyond the north and south margins of the range. Glaciers in the southern Brooks Range were longer than those farther north because of a southerly precipitation source, whereas those in the central and eastern part of the range were larger than glaciers at the extremities of the mountain system because of higher and more-extensive accumulation areas. Glacier equilibrium-line altitudes (ELAs) at the time of greatest advance were depressed 600 ± 100 m below present levels, whereas during a less-extensive late-glacial readvance (Alapah Mountain) ELA depression was about 300 ± 30 m. Radiocarbon dates indicate that Itkillik drift correlates with Late Wisconsin drift along the southern margin of the Laurentide Ice Sheet and with drift of Cordilleran glaciers in southern Alaska and the western conterminous United States deposited during the last glaciation. Itkillik I moraines represent the maximum ice advance under cold full-glacial conditions between about 24,000 and 17,000 14C y. a. Itkillik II sediments, probably deposited close to 14,000 y. a., are characterized by abundant outwash and ice-contact stratified drift implying a milder climate than that of the Itkillik I phase. Alapah Mountain moraines at the heads of valleys draining high-altitude (≥1800 m) source areas record a possible late Itkillik readvance that is not yet closely dated. Itkillik glaciers may have largely disappeared from Brooks Range valleys by the beginning of the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号