首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The volume of Antarctic ice at the Last Glacial Maximum is a key factor for calculating the past contribution of melting ice sheets to Late Pleistocene global sea level change. At present, there are large uncertainties in our knowledge of the extent and thickness of the formerly expanded Antarctic ice sheets, and in the timing of their release as meltwater into the world’s oceans. This paper reviews the four main approaches to determining former Antarctic ice volume, namely glacial geology, glacio-isostatic studies, glaciological modelling, and ice core analysis and attempts to reconcile these to give a ‘best estimate’ for ice volume. In the Ross Sea there was a major expansion of grounded ice at the Last Glacial Maximum, accounting for 2.3–3.2 m of global sea level. At some time in the Weddell Sea a large grounded ice sheet corresponding to c. 2.7 m of global sea level extended to the shelf break. However, this ice expansion has not yet been confidently dated and may not relate to the Last Glacial Maximum. Around East Antarctica there was thickening and advance offshore of ice in coastal regions. Ice core evidence suggests that the interior of East Antarctica was either close to its present elevation or thinner during the last glacial so the effect of East Antarctica on sea level depends on the net balance between marginal thickening and interior thinning. Suggested East Antarctic contributions vary from a 3–5.5 m lowering to a 0.64 m rise in global sea level. The Antarctic Peninsula ice sheet thickened and extended offshore at the Last Glacial Maximum, with a sea level equivalent contribution of c. 1.7 m. Thus, the Antarctic ice sheets accounted for between 6.1 and 13.1 m of global sea level fall at the Last Glacial Maximum. This is substantially less than has been suggested by most previous studies but the maximum figure matches well with one modelling estimate. The timing of Antarctic deglaciation is not well known. In the Ross Sea, terrestrial evidence suggests deglaciation may have begun at c. 13,000 yr BP1 but that grounded ice persisted until c. 6,500 yr BP. Marine evidence suggests the western Ross Sea was deglaciated by c. 11,500 yr BP. Deglaciation of the Weddell Sea is poorly constrained. Grounded ice in the northern Antarctic Peninsula had retreated by c. 13,000 yr BP, and further south deglaciation occurred sometime prior to c. 6,000 yr BP. Many parts of coastal East Antarctica apparently escaped glaciation at the LGM, but in those areas that were ice-covered deglaciation was underway by 10,000 yr BP. With existing data, the timing of deglaciation shows no firm relation to northern hemisphere-driven sea level rise. This is probably due partly to lack of Antarctic dating evidence but also to the combined influence of several forcing mechanisms acting during deglaciation.  相似文献   

2.
研究格陵兰冰盖(GrIS)质量变化异常速率可以帮助了解异常气候事件驱动海平面变化的机制.聚焦于2010~2012年GrIS质量变化的异常速率,及其对海平面指纹(SLF)和相对海平面(RSL)变化的贡献.通过联合2003~2015年GRACE月重力场数据和表面质量平衡(SMB)数据,采用mascon拟合法及网格尺度因子恢复泄漏,获得了6个流域的质量变化时空分布.基于海平面变化方程(SLE)并考虑负荷自吸引效应估算了SLF的空间分布.结果表明,2003~2015年间GrIS总质量变化速率分别为-288±7 Gt/a及-275±1 Gt/a;而在2010~2012年间速率相应地增加至-456±30 Gt/a及-464±38 Gt/a,该时期格陵兰西北海岸及东南沿海地区呈现出大量冰盖融化,其对海平面的贡献变化呈现倒“V”型(即先升后降),而全球平均海平面变化呈现出明显的正“V”型(即先降后升).另外,GrIS融化对海平面的贡献约为31%,造成全球平均RSL增加了0.07 cm/a,而对斯堪的纳维亚及北欧地区的RSL贡献为-0.6 cm/a,GrIS融化造成的远海地区RSL上升速率比全球平均RSL速率高近30%.   相似文献   

3.
在气候变暖背景下,全球大多数冰川加速退缩,冰川物质亏损严重,呈负平衡增长趋势。利用世界冰川监测服务处(WGMS)最新刊布的物质平衡资料,对全球重点监测冰川的物质平衡现状及结果进行扼要的总结和比较,分析了1980-2011年全球不同地区冰川物质平衡的区域特征、变化过程及总体变化趋势,评估了冰川物质平衡对海平面变化的贡献。结果表明:1980-2011年,全球冰川物质亏损严重,加速退缩,平均减薄了14 m,其中阿尔卑斯山脉及太平洋海岸山脉的退缩尤为明显,平均减薄了30 m左右;各地区冰川的平均物质平衡变化趋势与全球平均趋势基本保持一致,具有典型的纬度地带性分布特征;物质平衡变化过程分为正平衡波动型、负平衡波动型及负平衡持续增长型三类,但总体上处于负平衡持续增长趋势;在全球继续增温的未来,冰川将会继续退缩,物质亏损强度不断增大,负平衡趋势不断增强。冰川物质平衡对海平面上升的贡献呈增大趋势,且与全球气温上升基本上是同步的。  相似文献   

4.
国际南极冰盖与海平面变化研究述评   总被引:2,自引:1,他引:1  
海平面上升是全球变暖的主要后果之一。尽管有少数冰川学家认为,气候变暖并不能确保雪积累量的显著增加,同时可能出现冰流的突然变化,因此南极冰盖在未来海平面变化中的作用存在很大的不确定性。但近几十年来南极半岛气温的急剧上升,已使大量的冰架崩解。冰架崩解并不对海平面产生真正的影响,但反映出南极洲气候与冰川存在急剧变化的可能。  相似文献   

5.
现代冰川过程与全球环境气候演变   总被引:3,自引:0,他引:3  
文章从宏观和微观两个方面扼要阐述了现代冰川过程与全球变化之间的关系。南极冰盖和格陵兰冰盖冰川物质平衡值目前还没有确切结论,虽然它与全球海平面的升降密切相关。山地冰川末端进退变化和冰川物质平衡与全球升温对应较好。极地冰盖现代降水中的稳定同位素比率,主要阴、阳离子、生物有机酸、微粒、超痕量重金属元素、宇宙尘埃以及火山灰等杂质的含量,为认识地球现代环境气候状况提供了丰富的资料。极地冰盖冰芯的分析结果为重建过去气候环境提供了大信息量,高保真度和高分辨率的资料为预测未来气候环境奠定了坚实基础,具有其它任何载体无法取代的优越性。山地冰川的现代和过去气候环境记录,对研究全球和区域性气候环境状况与变迁意义重大  相似文献   

6.
陆地表层水贮量变化对海平面上升贡献的综合评估   总被引:2,自引:0,他引:2  
由于气候变暖和人为活动的加剧,大陆表面水贮量正在发生着显著的变化,这必将引起海平面的变化。然而,陆地表层水贮量的变化是非常复杂的。主要讨论了地下水、人工水库、天然湖泊和森林退化对海平面影响的主要研究结果,重新评估了这些因素对海平面贡献的程度,尤其是考虑了中国相关因子的作用。还就一些不确定的因素,如水库深层渗透水、土壤水贮量变化、灌溉蒸腾等对海平面的影响也进行了讨论。  相似文献   

7.
Greenland Ice Sheet is one of the two largest ice sheets on the planet. Under the background of climate warming, the melting of the Greenland ice sheet and its contribution to sea level rise has become an international hot issue. The whole melting of the Greenland ice sheet can cause the global sea level to rise by about 7.3 meters. However, the dynamic mechanism that affects the mass balance of ice sheet is still unclear and is the greatest uncertainty source for predicting the rise in sea level in the future. The National Key Research and Development Program of China “A Study of the Monitoring, Simulation and Climate Impact of Greenland Ice Sheet” conducts monitoring and simulation studies on the key processes of instability of the “ice sheet-outlet glacier-sea ice” system, and establishes a satellite-airborne-ground integrated observation system, supporting the numerical simulation and impact research of the ice sheet and its surrounding sea ice, laying the foundation for long-term monitoring and international cooperation in Greenland. This program will work to reduce the uncertainty of sea level change projections by improving the ice sheet dynamic model forced by the ice core records, reveal the driving mechanism of sea ice changes around the ice sheet, focusing on the Northwest Passage, evaluate and forecast the navigation window period. The results of the project will deepen the understanding of the changes and impacts of the Arctic cryosphere, serve the safe navigation and operation of the Northwest Passage, and provide scientific support for the comprehensive risk prevention of coastal zones in China.  相似文献   

8.
We present relative sea level (RSL) curves in Antarctica derived from glacial isostatic adjustment (GIA)predictions based on the melting scenarios of the Antarctic ice sheet since the Last Glacial Maximum (LGM)given in previous works.Simultaneously,Holocene-age RSL observations obtained at the raised beaches along the coast of Antarctica are shown to be in agreement with the GIA predictions.The differences from previously published ice-loading models regarding the spatial distribution and total mass change of the melted ice are significant.These models were also derived from GIA modelling; the variations can be attributed to the lack of geological and geographical evidence regarding the history of crustal movement due to ice sheet evolution.Next,we summarise the previously published ice load models and demonstrate the RSL curves based on combinations of different ice and earth models.The RSL curves calculated by GIA models indicate that the model dependence of both the ice and earth models is significantly large at several sites where RSL observations were obtained.In particular,GIA predictions based on the thin lithospheric thickness show the spatial distributions that are dependent on the melted ice thickness at each sites.These characteristics result from the short-wavelength deformation of the Earth.However,our predictions strongly suggest that it is possible to find the average ice model despite the use of the different models of lithospheric thickness.By sea level and crustal movement observations,we can deduce the geometry of the post-LGM ice sheets in detail and remove the GIA contribution from the crustal deformation and gravity change observed by space geodetic techniques,such as GPS and GRACE,for the estimation of the Antarctic ice mass change associated with recent global warming.  相似文献   

9.
冰雷达探测研究南极冰盖的进展与展望   总被引:3,自引:0,他引:3  
南极冰盖是地球上最大的陆缘冰体,其物质收支和稳定性对全球气候变化和海平面升高有重要的影响。冰雷达,或称无线电回波探测,是冰川学家调查南极冰盖冰下特征的主要方法。在过去的50年里,冰雷达被广泛用于测量冰盖厚度、内部构造和冰下地貌,这些参数是计算冰盖体积和物质平衡、重建过去冰雪积累和消融率以及冰盖动力和沉积过程的基础。现在,冰雷达测量覆盖了南极绝大部分区域,极大地提升了人们对南极冰盖和全球系统间相互作用的理解。首先,简要介绍了冰雷达及其技术发展,然后着重评述了冰雷达在探测研究南极冰盖厚度和冰下地形、内部反射层、冰下湖和冰下水系、冰床粗糙度以及冰晶组构上的进展。最后,对未来冰雷达探测研究南极冰盖的前景进行了展望,并给出我国的现状。


  相似文献   

10.
Global changes in postglacial sea level: A numerical calculation   总被引:2,自引:0,他引:2  
The sea-level rise due to ice-sheet melting since the last glacial maximum was not uniform everywhere because of the deformation of the Earth's surface and its geoid by changing ice and water loads. A numerical model is employed to calculate global changes in relative sea level on a spherical viscoelastic Earth as northern hemisphere ice sheets melt and fill the ocean basins with meltwater. Predictions for the past 16,000 years explain a large proportion of the global variance in the sea-level record, particularly during the Holocene. Results indicate that the oceans can be divided into six zones, each of which is characterized by a specific form of the relative sea-level curve. In four of these zones emerged beaches are predicted, and these may form even at considerable distance from the ice sheets themselves. In the remaining zones submergence is dominant, and no emerged beaches are expected. The close agreement of these predictions with the data suggests that, contrary to the beliefs of many, no net change in ocean volume has occurred during the past 5000 years. Predictions for localities close to the ice sheets are the most in error, suggesting that slight modifications of the assumed melting history and/or the rheological model of the Earth's interior are necessary.  相似文献   

11.
Data on recent variations in the seasonal extent of snow cover and sea ice, of the terminal position and volume of alpine glaciers, and of ground temperature profiles in permafrost areas are reviewed. The extent of seasonal snow cover and of sea ice has fluctuated irregularly over the last 15–20 years. There is no apparent response to global warming trends. In contrast, most glaciers retreated and thinned from the late 19th century until the 1960s and Alaskan permafrost temperatures have risen 2°–4° C per century. Recently, some glacier advances have been noted.  相似文献   

12.
The Greenland Ice Sheet is thinning at an accelerating pace and the ice sheet's contribution to sea-level rise has doubled in less than a decade. New data show rapid and widespread changes in the behaviour of the ice sheet, particularly along the coastal margin. These changes coincide with a decade of sustained Arctic warming of up to 3 °C. Decay of the Greenland Ice Sheet in response to global warming will not only be governed by increased surface melting during longer and warmer summers but also by a speed-up of coastal glaciers that drain the interior ice sheet. A precise estimate of sea-level rise in the twenty-first century relies on improved theoretical treatment of these glaciers in computer models.  相似文献   

13.
A slight cooling can induce the formation of ice sheets in the Scandinavian mountains and in the American Arctic. The increasing albedo and the appearance of cold air masses above the glaciers cause glaciation to spread over a vast area. As a result, the sea level lowers and a large part of the Barents and Kara seabeds dries up. Ice sheets are formed there, which spread over the northeastern part of the Kola Peninsula, the Pechora River basin, and over northwestern Siberia. The glacier barrier extending nearly from the North Pole to central Europe hinders latitudinal atmospheric circulation. Precipitation decreases sharply in the areas east and southeast of the glaciers. As a consequence, glaciers in the mid-latitudes retreat and sea level rises. Increased iceberg formation is induced in the periphery of the Barents Ice Sheet, causing it to disappear. An interglacial sets in.  相似文献   

14.
In view of the huge ice cover of 24.5 X 106 km3 in Antarctica, which accounts for over 90% by volume of the ice body on earth, the movement of Antarctic glaciers is a major control on global sea-level change and climatic fluctuation. As recorded in the Quaternary deposits in King George Island, West Antarctica, three rapid ablations can be recognized at 11000, 9000 and 6100 years ago and the global climate within the past 6000 years is characterized by small-amplitude warm-cold fluctuation. Intertidal deposits at the north bank of the Shenzhen Bay suggest a periodic variation in sea level in about every 670 years over the last 6000 years with low sea levels recorded in the periods of 5500-4900, 3900-3600, 2400-2200 and 1300-1200 years ago. Between these periods the sea level rised for about 80 cm on average. The modern warming climate in the last century corresponds with a rise of sea level at the rate of 2~3 mm/a. A state key project under the Antarctic Science & Technology Program (No. 905-02-04-03) and is partially financially supported by the Natural Science Foundation of Guangdong Province.  相似文献   

15.
The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of glacial meltwater entering the oceans as a surface layer that acts to reduce the amount of energy available for glacial nourishment. This causes the ice sheet to melt back, which continues the supply of meltwater until the ice sheet diminishes to a size consistent with the reduced rate of nourishment. The meltwater supply then decreases, the rate of nourishment increases, and a new stadial begins.  相似文献   

16.
Late Quaternary glaciation of Tibet and the bordering mountains: a review   总被引:2,自引:0,他引:2  
Abundant glacial geologic evidence present throughout Tibet and the bordering mountains shows that glaciers have oscillated many times throughout the late Quaternary. Yet the timing and extent of glacial advances is still highly debated. Recent studies, however, suggest that glaciation was most extensive prior to the last glacial cycle. Furthermore, these studies show that in many regions of Tibet and the Himalaya glaciation was generally more extensive during the earlier part of the last glacial cycle and was limited in extent during the global Last Glacial Maximum (marine oxygen isotope stage 2). Holocene glacial advances were also limited in extent, with glaciers advancing just a few kilometers from their present ice margins. In the monsoon-influenced regions, glaciation appears to be strongly controlled by changes in insolation that govern the geographical extent of the monsoon and consequently precipitation distribution. Monsoonal precipitation distribution strongly influences glacier mass balances, allowing glaciers in high altitude regions to advance during times of increased precipitation, which are associated with insolation maxima during glacial times. Furthermore, there are strong topographic controls on glaciation, particular in regions where there are rainshadow effects. It is likely that glaciers, influenced by the different climatic systems, behaved differently at different times. However, more detailed geomorphic and geochronological studies are needed to fully explore regional variations. Changes in glacial ice volume in Tibet and the bordering mountains were relatively small after the global LGM as compared to the Northern Hemisphere ice sheets. It is therefore unlikely that meltwater draining from Tibet and the bordering mountains during the Lateglacial and early Holocene would have been sufficient to affect oceanic circulation. However, changes in surface albedo may have influenced the dynamics of monsoonal systems and this may have important implications for global climate change. Drainage development, including lake level changes on the Tibetan plateau and adjacent regions has been strongly controlled by climatic oscillations on centennial, decadal and especially millennial timescales. Since the Little Ice Age, and particularly during this century, glaciers have been progressively retreating. This pattern is likely to continue throughout the 21st century, exacerbated by human-induced global warming.  相似文献   

17.
Hughes, Terence J. 1987 06 01: Deluge II and the continent of doom: rising sea level and collapsing Antarctic ice. Boreas , Vol. 16, pp. 89–100. Oslo. ISSN 0300–9483.
Many cultures in both the Old and New Worlds have preserved legends of a Great Flood. In the Biblical deluge, 'the springs of the great deep broke through and the sluices of heaven opened' (Genesis 7: 11). The rise in sea level, as opposed to prolonged rainfall, is a conceivable cause of global flooding because the last stages in collapse of late Wisconsin/Weichselian ice sheets occurred in the late prehistorical period, from 8,000 to 6,000 B.C. A possible mechanism that might collapse large parts of ice sheets in a short time is found in Jakobshavns Isbrae, which drains the west-central part of the Greenland Ice Sheet. This mechanism, called the Jakobshavns Effect, is described and its possible role in Holocene collapse of former Northern Hemisphere ice sheets (Deluge I) and future collapse of parts of the Antarctic Ice Sheet (Deluge II) is examined. Rapid global flooding by this mechanism is extremely unlikely; however, we lack the information needed to eliminate the possibility.  相似文献   

18.
Two major causes of global sea level rise such as thermal expansion of the oceans and the loss of landbased ice for increased melting have been claimed by some researchers and recognized by the IPCC.However, other climate threat investigators revealed that atmosphere-ocean modeling is an imperfect representation, paleo-data consist of proxy climate information with ambiguities, and modern observations are limited in scope and accuracy. It is revealed that global warming and polar ice-melt although a reality would not contribute to any sea level rise. Floating-ice of the polar region on melting would reoccupy same displaced volume by floating ice-sheets. Land-ice cover in the polar region on melting can reduce load from the crust to activate elastic rebound that would raise land for its isostatic equilibrium.Such characteristics would not contribute to sea level rise. Equatorial bulge, polar flattening, elevation difference of the spheroidal surface between equator and pole with lower in the pole, strong gravity attraction of the polar region and week gravity attraction of the equatorial region, all these phenomena would play dominant role in preventing sea level rise. Palaeo-sea level rise and fall in macro-scale(10-100 m or so) were related to marine transgression and regression in addition to other geologic events like converging and diverging plate tectonics, orogenic uplift of the collision margin, basin subsidence of the extensional crust, volcanic activities in the oceanic region, prograding delta buildup, ocean floor height change and sub-marine mass avalanche. This study also reveals that geophysical shape, gravity attraction and the centrifugal force of spinning and rotation of the earth would continue acting against sea level rise.  相似文献   

19.
Spatial pattern analysis of marine terrace elevations from 40–30 thous. years BP was used to reconstruct sea level/geoid surface and geoid parameters during that time. The polar flattening of geodetic ellipsoid was lower than its present value (1/298.81 and 1/298.26) respectively because of glacial-induced mass redistribution. Increase in polar stress occurred during the last 30 thous. years was possibly driven by pertubation brought to the gravitational field by disintegration of polar ice sheets in the Northern hemisphere. But the polar flattening value becomes only half-restored during the last deglacial hemicycle. So repetitive glacial advances during Pleistocene acted as a global “pump” for uncondensed zones at the upper/lower mantle boundary. Dissipation of tidal energy is an order of magnitude less intensive in its Earth's rotation effect. A contribution to the International Geological Correlation Programme Project JGCP — 274 “Coastal Evolution in the Quaternary”.  相似文献   

20.
Accurate prediction of future sea level rise requires models that accurately reproduce and explain the recent observed dramatic ice sheet behaviours. This study presents a new multi-phase, multiple-rheology, scalable and extensible geofluid model of the Greenland ice sheet that shows the credential of successfully reproducing the mass loss rate derived from the Gravity Recovery and Climate Experiment (GRACE), and the microwave remote sensed surface melt area over the past decade. Model simulated early 21st century surface ice flow compares satisfactorily with InSAR measurements. Accurate simulation of the three metrics simultaneously cannot be explained by fortunate model tuning and give us confidence in using this modelling system for projection of the future fate of Greenland Ice Sheet (GrIS). Based on this fully adaptable three dimensional, thermo-mechanically coupled prognostic ice model, we examined the flow sensitivity to granular basal sliding, and further identified that this leads to a positive feedback contributing to enhanced mass loss in a future warming climate. The rheological properties of ice depend sensitively on its temperature, thus we further verified modelâ?s temperature solver against in situ observations. Driven by the NCEP/NCAR reanalysis atmospheric parameters, the ice model simulated GrIS mass loss rate compares favourably with that derived from the GRACE measurements, or about ?147 km3/yr over the 2002–2008 period. Increase of the summer maximum melt area extent (SME) is indicative of expansion of the ablation zone. The modeled SME from year 1979 to 2006 compares well with the cross-polarized gradient ratio method (XPGR) observed melt area in terms of annual variabilities. A high correlation of 0.88 is found between the two time series. In the 30-year model simulation series, the surface melt exhibited large inter-annual and decadal variability, years 2002, 2005 and 2007 being three significant recent melt episodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号