首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Distributions of Hg, Cd, Pb, Cu and Zn in seawater and sediment from Mljet National Park, Adriatic Sea are presented for the first time. Natural and anthropogenic factors play an important role in determining resultant trace metals' concentrations in the region. We place particular emphasis on the saline “lakes” of Malo Jezero and Veliko Jezero, which have restricted flows of seawater. In Malo Jezero lake, fresh karstic spring water generated by flooding, and weathering of dolomites are the main sources of naturally elevated Cd, Pb and Zn concentrations (20.7 ± 1.6, 289 ± 19, 1260 ± 0.08 ng L?1, respectively); anthropogenic input is negligible. In Veliko Jezero lake enhanced Cu and Zn contents originate from anthropogenic input (tourism and agriculture). Distributions of the Pb and Zn in the water columns of both lakes are influenced by natural aragonite precipitation and sedimentation. Exceptionally high total Hg concentrations of 24.2 and 33.7 ng L?1 in the water column of Malo Jezero, sampled during periods of high rainfall associated with strong eastern winds, suggest an airborne input. Total Hg concentrations in waters of both lakes are elevated because of inefficient mixing. Two different metal distribution patterns exist in the sediment columns. First, Hg, Pb, Cu and Zn show elevated concentrations in recent sediments due to anthropogenic input. Second, Cd content increases with depth due to reprecipitation via a downward redox boundary shift.Described natural processes, as well as anthropogenic influence, enhance levels of trace metals. Careful study followed by suitable interpretation based on geochemical data were necessary to distinguish natural from anthropogenic sources.  相似文献   

2.
In the framework of the German contribution to the Joint Global Ocean Flux Study (JGOFS), deep-water fluxes of particle-associated trace elements were measured in the northeast Atlantic Ocean. The sinking particles were collected almost continuously from 1992 to 1996 at three time-series stations, L1 (33°N/22°W), L2 (47°N/20°W), and L3 (54°N/21°W), using sediment traps. The focus of the present study is the temporal variability of the particle-associated elemental fluxes of Al, Ca, Cd, Co, Cu, Fe, Mn, Ni, P, Pb, Ti, V, and Zn at a depth of 2000 m.A clear seasonality of the fluxes that persisted for several years was documented for the southernmost station (L1) at stable oligotrophic conditions in the area of the North Atlantic Subtropical Gyre East (NASTE). At L2 and L3, an episodic nature of the elemental fluxes was determined. Mesoscale eddies are known to frequently cause temporal and spatial variability in the flux of biogenic components in that area. These events modified the simple seasonal pattern controlled by the annual cycle at L2, in the North Atlantic Drift Region (NADR), and at L3, which was influenced by the Atlantic Arctic province (ARCT). All stations were characterized by an additional episodic lithogenic atmospheric supply reaching the deep sea.The integrated annual fluxes during the multi-year study revealed similar flux magnitudes for lithogenic elements (Al, Co, Fe, Ti, and V) at L2 and L3 and roughly twofold fluxes at L1. Biogenic elements (Cd, P, and Zn) showed the opposite trend, i.e., two to fourfold higher values at L2 and L3 than at L1. For Mn, Ni, and Cu, the spatial differences were smaller, perhaps because of the intermediate behavior, between lithogenic and biogenic, of these elements. Similarly, among the three study sites, there were no noticeable differences in the total annual flux of Pb.The respective lithogenic fractions of the deep-sea fluxes of Cd, Co, Cu, Mn, Ni, V, and Zn were subtracted based on the amount of Al, with the average composition of the continental crust as reference. This procedure allowed estimation of the labile trace element fraction (TEexc) of the particles, i.e., TE taken up or scavenged during particle production and sedimentation. The ratios of TEexc/P clearly demonstrated an enrichment of TE over labile P from biogenic surface material to the deep sea for Zn (factor 4–6), Mn (12–27), Ni (3–5), and Cu (9–25); an intermediate status for Co (0.5–2.2); and depletion for Cd vs. P (0.2–0.4). Surprisingly, the recycling behavior of excess Co was found to be similar to that of P. Hence, Coexc behaved like a biogenic element; this is in contrast to total Co, which is dominated by the refractory lithogenic fraction.Moreover, it is argued that these excess elemental fluxes caused a loss of the dissolved elements in upper waters, since their transport reaches the deep-sea waters at 2000 m, a depth far below of deep-winter mixing and upwelling. The annual amount of excess TE exported from surface waters was estimated to be 1.3×109 mol Zn y?1, 4.4×109 mol Mn y?1, 4.9×108 mol Ni y?1, 2.2×107 mol Cd y?1, 7.4×108 mol Cu y?1, and 2.7×107 mol Co y?1 for the whole North Atlantic Ocean. Important primary sources that could replenish these losses are the aeolian and fluvial supply processes.  相似文献   

3.
The Saldanha hydrothermal field is hosted atop a mafic–ultramafic seamount, located at a non-transform offset on the Mid-Atlantic Ridge. Previous observations revealed a field where transparent low-temperature fluids discharge through centimeter-sized vents without the formation of chimney structures. We present geochemical and stable isotope (O and C) analyses from sediment samples collected at this field, both at and far from the vent area. Most sediments, including some directly adjacent to orifice vents, are pelagic oozes with only a weak hydrothermal overprinting. Hydrothermal precipitates are characterized by Fe–Mn oxyhydroxides and a minor amount of Cu–Zn sulphide minerals. However, one of the cores (SCD7) collected at the vent area shows a much stronger hydrothermal signature. This core is composed of a matrix of serpentine + talc ± chlorite with high porosity, where calcite + chalcopyrite + sphalerite/wurtzite ± pyrite–pyrrhotite were precipitated. In this core, metal enrichments, REE patterns, and the oxygen and carbon isotope composition of calcites indicate that mineralization must have occurred in the subsurface by high-temperature fluids, with minor mixing with seawater and with a significant magmatic contribution. Thus, while most samples confirm previous findings indicating that Saldanha hydrothermal fluid discharge is mainly diffuse and of low temperature, data from core SCD7 suggest that areas of high-temperature hydrothermal activity also occur, where temperatures of the fluids could reach > 260 °C and maximum temperatures of 330 °C. We suggest that fluids can flow through faults at the top of the mount and discharge in a more focused way through vent orifices, producing intense hydrothermal alteration of the sediments. At these locations complex hydrothermal processes occur, including reactions of the hydrothermal fluids with mafic and ultramafic rocks and magma degassing, as suggested by the carbon isotope composition of hydrothermal calcites. The high temperature of the fluid inferred from the geochemistry of the hydrothermal minerals requires a significant heat input to the system, suggesting an additional magmatic heat source to the already proposed exothermic serpentinization reactions.  相似文献   

4.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

5.
Despite much research on Euphausia superba, estimates of their total biomass and production are still very uncertain. Recently, circumpolar krill databases, combined with growth models and revisions in acoustics have made it possible to refine previous estimates. Net-based databases of density and length frequency (KRILLBASE) yield a summer distributional range of ~19×106 km2 and a mean total abundance of 8×1014 post-larvae with biomass of 379 million tonnes (Mt). These values are based on a standardised net sampling method but they average over the period 1926–2004, during which krill abundance has fluctuated. To estimate krill biomass at the end of last century we combined the KRILLBASE map of relative krill density around Antarctica with an acoustics-derived biomass estimate of 37.3 Mt derived for the Scotia Sea area in 2000 by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Thus the CCAMLR 2000 survey area contains 28% of the total stock, with total biomass of ~133 Mt in January–February 2000. Gross postlarval production is estimated conservatively at 342–536 Mt yr?1, based on three independent methods. These are high values, within the upper range of recent estimates, but consistent with the concept of high energy throughput for a species of this size. The similarity between the three production estimates reflects a broad agreement between the three growth models used, plus the fact that, for a given population size, production is relatively insensitive to the size distribution of krill at the start of the growth season. These production values lie within the envelope of what can be supported from the Southern Ocean primary production system and what is required to support an estimated predator consumption of 128–470 Mt yr?1. Given the range of recent acoustics estimates, plus the need for precautionary management of the developing krill fishery, our net-based data provide an alternative estimate of total krill biomass.  相似文献   

6.
7.
Air–sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA–COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA–COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO2 of 16.4 ± 5.6 cm h?1 when using global mean winds of 6.89 m s?1 from the NCEP/NCAR Reanalysis 1 1954–2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h?1 whilst for less soluble methane the estimate is 18.0 cm h?1.  相似文献   

8.
The vertical sinking flux of particulate Al, Fe, Pb, and Ba from the upper 250 m of the Labrador Sea has been estimated from measurements of 234Th/238U disequilibrium and the respective metal/234Th ratios in >53 μm size particles. 234Th-derived particulate metal fluxes include in situ scavenged metals, labile lithogenic metals, and metals derived from external input (e.g., atmospheric supply). In contrast to the POC/234Th ratio, particle size-fractionated (0.4–10 μm, 10–53 μm, and >53 μm) Al/234Th, Fe/234Th and Pb/234Th, and Ba/234Th ratios generally increase with depth and exhibit no systematic change with particle diameter. Sinking fluxes of particulate Al (2.47–22.3 μmol m−2 d−1), Fe (2.69–16.3 μmol m−2 d−1), Pb (2.85–70 nmol m−2 d−1), and Ba (0.13–2.1 μmol m−2 d−1) at 50 m (base of the euphotic zone) and 100 m (base of the mixed layer) are largely within the range of previous sediment trap results from other ocean basins. Estimates of the upper ocean residence time of Al (0.07–0.28 yr) and Pb (0.8–2.9 yr) are short compared to previously reported values. The settling rate of >53 μm particles calculated from the 234Th data ranges from 14 to 38 m d−1.  相似文献   

9.
The life-histories and the secondary production of four dominant peracarid crustaceans (the mysids Boreomysis arctica and Parapseudomma calloplura, the amphipod Rhachotropis caeca, and the isopod Ilyarachna longicornis) in bathyal depths of the Bay of Biscay (NE Atlantic; between 383 and 420 m) and the Catalan Sea (Northwestern Mediterranean; between 389 and 1355 m) were established. Both the Atlantic and the Mediterranean populations of the major part of the target-species had two generations/year with mean cohort-production intervals (CPI) ranging from 5.5 mo for Ilyarachna longicornis to 6.3 mo for Parapseudomma calloplura. The Hynes method showed secondary production to vary in the Bay of Biscay between 0.113 mg DW m−2 yr−1 for I. longirostris and 3.069 mg DW m−2 yr−1 for P. calloplura, with P/B ratios between 4.57 (I. longirostris) and 7.93 (Boreomysis arctica). In the Catalan Sea, production varied between 0.286 mg DW m−2 yr−1 for I. longirostris and 1.096 mg DW m−2 yr−1 for P. calloplura, with P/B between 5.72 (I. longirostris) and 6.66 (P. calloplura). Application of two different empiric models to the whole peracarid assemblage gave similar levels of secondary production in both study areas (between 29.26 and 32.14 mgDWm−2 yr−1 in the Bay of Biscay; between 26.23 and 26.54 mg DW m−2 yr−1 in the Catalan Sea). From the analysis of gut contents of 22 species the dominant species in each study area were assigned to two basic trophic levels, detritus feeders and predators. Also, cumulative curves of dominance showed high diversity (low dominance) for peracarid assemblages distributed at mid-bathyal depths (524–693 m) both in the Bay of Biscay off Arcachon and in the Catalan Sea off Barcelona. We also discuss and compare, both within and between areas, how environmental features may explain the observed diversity patterns, the trophic structure, and the production results obtained for the suprabenthos assemblages.  相似文献   

10.
The use of geochemical tags in calcified structures of fish and invertebrates is an exciting tool for investigating larval population connectivity. Tag evaluation over relatively short intervals (weeks) may detect environmental and ecological variability at a temporal scale highly relevant to larval transport and settlement. We collected newly settled mussels (Mytilus californianus and M. galloprovincialis) weekly during winter/spring of 2002 along the coast of San Diego, CA, USA, at sites on the exposed coast (SIO) and in a protected coastal bay (HI), to investigate temporal patterns of geochemical tags in mussel shells. Analyses of post-settlement shell via LA-ICP-MS revealed statistically significant temporal variability for all elements we examined (Mg, Mn, Cu, Sr, Cd, Ba, Pb and U). Despite this, our ability to distinguish multielemental signatures between sites was largely conserved. Throughout our 13-week study, SIO and HI mussels could be chemically distinguished from one another in 78–87% of all cases. Settlement varied between 2 and 27 settlers gram-byssus?1 week?1 at SIO and HI, and both sites were characterized by 2–3 weeks with “high” settlement. Geochemical tags recorded in early larval shell of newly settled mussels differed between “high” and “low” settlement weeks at both sites (MANOVA), driven by Mg and Sr at SIO (p = 0.013) and Sr, Cd, Ba and Pb at HI (p < 0.001). These data imply that shifts in larval sources or transport corridors were responsible for observed settlement variation, rather than increased larval production. In particular, increased settlement at HI was observed concurrent with the appearance of geochemical tags (e.g., elevated Cd), suggesting that those larvae were retained in upwelled water near the mouth of the bay. Such shifts may reflect short-term changes in connectivity among sites due to altered transport corridors, and influence the demography of local populations.  相似文献   

11.
The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4 < 0.2 μM) and silicate (DSi < 2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L?1), high particulate inorganic carbon (PIC) concentration (~8 μmol L?1) and coccolithophore abundance up to 57 × 106 cells L?1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 75 μg C L?1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L?1 in the upper 40 m). Integrated primary production (PP) ranged between 210 and 680 mg C m?2 d?1 and integrated calcification (CAL) ranged between 14 and 140 mg C m?2 d?1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3–0.7 μg C L?1 h?1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to ?49 μmol kg?1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15–107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton blooms in the area prior to the cruise, hence, the investigated area remained a sink for atmospheric CO2 despite calcification.  相似文献   

12.
We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L−1 h−1 in the top 20 m, 8–28 nmol peptide L−1 h−1 between 100 and 300 m (O2-depleted zone), and 14–19 nmol peptide L−1 h−1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9–26, 3–17, and 6 nmol L−1 h−1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.  相似文献   

13.
First data on microbial respiration in the Levantine Sea are reported with the aim of assessing the distribution of oxidative processes in association with the main Mediterranean water masses and the changing physical structure determined by the Eastern Mediterranean Transient. Respiratory rates, in terms of metabolic carbon dioxide production, were estimated from measured electron transport system activities in the polygonal area of the Levantine Sea (32.5–36.5 N Latitude, 26.0–30.25 E Longitude) and at Station Geo’95, in the Ionian Sea (35°34.88 N; 17°14.99 E). At the Levantine Sea, the mean carbon dioxide production rate decreased from the upper to the deeper layers and varied from 22.0±12.4 μg C h−1 m−3 in the euphotic layer to 1.30±0.5 μg C h−1 m−3 in the depth range between 1600 and 3000 m. Significant differences were found among upper, intermediate and bottom layers. The euphotic zone supported a daily carbon dioxide production of 96.6 mg C d−1 m−2 while the aphotic zone (between 200 and 3000 m) sustained a 177.1 mg C d−1 m−2 carbon dioxide production. In Station Geo’95, the carbon dioxide production rates amounted to 170.4 and 102.2 mg C d−1 m−2 in the euphotic and aphotic zones, respectively. The rates determined in the identified water masses showed a tight coupling of respiratory processes and Mediterranean circulation patterns. The increasing respiratory rates in the deep layers of the Levantine Sea are explained by the introduction of younger waters recently formed in the Aegean Sea.  相似文献   

14.
We undertook the first measurements of metabolic Cu requirements (net Cu:C assimilation ratios) and steady-state Cu uptake rates (ρCuss) of natural plankton assemblages in the northeast subarctic Pacific using the short-lived radioisotope 67Cu. Size-fractionated net Cu:C assimilation ratios varied ~3 fold (1.35–4.21 μmol Cu mol C?1) among the stations along Line P, from high Fe coastal waters to the Fe-limited open ocean. The variability in Cu:C was comparable to biogenic Fe:C ratios in this region. As previously observed for Fe uptake, the bacterial size class accounted for half of the total particulate ρCuss. Interestingly, carbon biomass-normalized rates of Fe uptake from the siderophore desferrioxamine B (DFB) (ρFeDFB; a physiological proxy for Fe-limitation) by the >20 μm size class were positively correlated with the intracellular net Cu:C assimilation ratios in this size class, suggesting that intracellular Cu requirements for large phytoplankton respond to increased Fe-limitation. At Fe-limited Ocean Station Papa (OSP), we performed short-term Cu uptake (ρCuL) assays to determine the relative bioavailability of Cu bound to natural and synthetic ligands. Like the volumetric ρCuss measured along Line P, the bacterial size class was responsible for at least 50% of the total ρCuL. Uptake rates of Cu from the various organic complexes suggest that Cu uptake was controlled by the oxidation state of the metal and by the metal:ligand concentration ratio, rather than the concentration of inorganic species of Cu in solution. Collectively, these data suggest that Cu likely plays an important role in the physiology of natural plankton communities beyond the toxicological effects studied previously.  相似文献   

15.
Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19 μmol site mg−1 C, and a log K′ of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu–FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC50 of 58.9 μg l−1. However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC50 ranging from 55.6 μg l−1 in the no-FA control to 137.4 μg l−1 in the 20 mg l−1 FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu–FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions.  相似文献   

16.
Photochemical production rates of hydrogen peroxide (H2O2) were determined in Antarctic waters during two research cruises. The first cruise was from mid-October to mid-November, 1993, in the confluence of the Weddell and Scotia Seas, and the second cruise was in December, 1994, along the coast of the Antarctic Peninsula. During these cruises, midday sea-surface production rates ranged from 2.1 to 9.6 nM h−1, with an average rate of 4.5 nM h−1. Production rates were consistently smaller than rates determined at lower latitudes (>9 nM h−1), primarily due to the colder temperatures and lower ultraviolet irradiances in polar waters. In situ production rates were determined with a free-floating drifter that was deployed for 12–14 h. Production rates, averaged over the deployment time, were highest at or near the surface (ca. 2.4–3.5 nM h−1) and decreased rapidly with depth to 0.1–0.7 nM h−1 at 10–20 m. The decrease in production rates with depth generally paralleled the decrease in ultraviolet irradiance in the water column. Production rates of hydrogen peroxide in Antarctic seawater were largely controlled by the ultraviolet irradiance in the water column, although there was some evidence for production in the blue region of the solar spectrum. A laboratory study was conducted to determine the wavelength dependence of the apparent quantum yield for the photochemical formation of hydrogen peroxide in Antarctic waters. Apparent quantum yields determined at 0°C decreased from 0.74×10−3 mol einstein−1 at 290 nm to 1.0×10−5 mol einstein−1 410 nm. At 20°C, apparent quantum yields for the photochemical production of hydrogen peroxide were within a factor of two of apparent quantum yields determined in temperate waters at 20–25°C. Sunlight-normalized H2O2 production rates were determined as a function of wavelength using noontime irradiance data from Palmer Station, Antarctica. A decrease in stratospheric ozone from 336 to 151 Dobson units resulted in a predicted 19–42% increase in the photoproduction of H2O2 at the sea surface in Antarctic waters. The magnitude of this increase depends on the concentration and absorbance characteristics of dissolved organic matter in the photic zone, as well as on other factors such as cloudiness and decreasing solar zenith angle that tend to lower photochemical rates offsetting increases due to stratospheric ozone depletion.  相似文献   

17.
The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.  相似文献   

18.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

19.
Cockle (Cerastoderma edule) population dynamics were studied at the southern limit of the distribution of this marine bivalve in Merja Zerga, Morocco. Parameters such as growth, mortality, and production were compared with those of a population at Arcachon Bay (France) a site in the center of the cockle's range. At each sampling period between two and three cohorts were simultaneously observed at each site and the average total abundance was usually higher at Merja Zerga. Recruitment occurred at both sites in spring when temperature rose above 19 °C, independently of the month. In Merja Zerga, winter recruitment was also observed at one occasion, following high sediment disturbance. The first year (2005–06) at Merja Zerga, the mortality rate was close to nil for juveniles and was Z = 1.5 yr? 1 for adults, providing a high production (64 g dry weight m? 2 yr? 1). At Arcachon during the same period, the juvenile mortality rate was Z = 10.9 yr? 1, the adult mortality rate was 3.4 yr? 1 and production was 26 gDW m?2 yr? 1. The second year (2006–07), mortality after recruitment was much higher (Z = 8.6 yr? 1, for juveniles) and similar to what was observed at Arcachon (Z = 8.4 yr? 1). Mortality rate of adults was higher at Merja Zerga (Z = 3.0 yr? 1) than at Arcachon (Z = 1.5 yr? 1). Production was lower at Arcachon than at Merja Zerga although growth performances were higher at Arcachon. The higher growth performance at Arcachon (Φ′ = 3.3) was mainly due to high asymptotic length (L = 38 mm) and was related to low intraspecific competition compared to Merja Zerga where cockle abundance was higher (Φ′ = 3.1, L = 31 mm). P/B was low in both sites and slightly higher at Arcachon (1.1–1.5 against 1.0–1.1 yr? 1). At Arcachon, recruitment was correlated with temperature, a peak occurring when temperature rose above 19 °C (June–July). At Merja Zerga, recruitment was already 2–3 months earlier but was not significantly correlated to temperature.This study showed that population dynamics of cockles at the southern limit of this distribution fell in the range of what was observed elsewhere in the North-Eastern Atlantic coast. Most factors that were involved in population regulation (intraspecific competition, predation and sediment dynamics) were not strictly dependent on latitude. The direct role of temperature (latitude dependent factor) was not obvious. Variation in temperature could explain the recruitment delay between Arcachon and Merja Zerga and the low maximum shell length at Merja Zerga.  相似文献   

20.
Bathymodiolus brevior [von Cosel, R., Métivier, B., Hashimoto, J., 1994. Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau Basin and the North Fiji Basin, western Pacific, and the Snake Pit Area, mid-Atlantic ridge. Veliger 37, 374–392] a bivalve mollusk living at deep-sea hydrothermal vents, exhibits daily microgrowth structures in its shell. This interpretation is substantiated by various lines of evidence: (1) similar shell portions of contemporaneous specimens from the same locality contain almost the same number of microincrements; (2) the number of microincrements coincides with the expected number of days in which shell portions of Bathymodiolus spp. form; (3) the width of such microincrements compares well with daily growth rates estimated for the close relative B. thermophilus [Kenk, V.C., Wilson, B.R., 1985. A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos rift-zone. Malacologia 26, 253–271]; (4) different specimens from the same site show similar microgrowth curves. In addition, we found support for tide-controlled shell growth. Daily shell growth rates fluctuate on a fortnightly basis. Some shell portions also revealed the typical tide-controlled microgrowth pattern commonly observed in intertidal bivalves. Based on the analyses of lunar daily growth increments, a growth curve for B. brevior was computed: Xt=14 cm−(14–0.04 cm) e−0.26t. This curve enables estimation of ontogenetic age from shell length. According to this equation, B. brevior reaches its maximum shell length of 14 cm at about age 18. Shell isotope analyses suggest that some major shell growth interruptions or retardations are related to extremely active hydrothermal venting activity. However, shell growth also stopped during periods of low venting implying physiological controls on shell formation. Results of the present study demonstrate that shells of B. brevior provide calendars and environmental data loggers that can complement or partly substitute for long-term observations of venting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号