首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study focuses on the morphometry and taxonomy of the Late Cretaceous coccolith genus Arkhangelskiella. Sixty samples from the Campanian–Maastrichtian interval of DSDP Hole 390A (Blake Nose) were investigated for their contents of Arkhangelskiella spp. In each sample one hundred specimens of Arkhangelskiella spp. were examined by measuring the coccolith length and width, as well as the length and width of the central area. In the samples investigated the Arkhangelskiella group exhibits a large size variation, specimens length varies from 4.95 μm to 14.52 μm. Former taxonomic concepts, based on morphometry, subdivided the Arkhangelskiella group into three species: Arkhangelskiella maastrichtiana, Arkhangelskiella confusa and Arkhangelskiella cymbiformis. Our data show a large variability of the morphometric data (coccolith length, width of the outer rim). There is no indication for three independant species; two of the quoted taxa (1. thick outer rim = Arkhangelskiella maastrichtiana; 2. very thin outer rim = Arkkhangelskiella cymbiformis) seem to be extreme forms of a continuous morphometric lineage. The lower part of the investigated succession (139.92–133.42 mbsf) is dominated by small specimens with an average length of 6.8 μm whereas the upper part (132.86–126.15 mbsf) is characterized by larger specimens (mean 8.7 μm). In DSDP Hole 390A the size increase appears to be very abrupt, within two samples (samples 133.42 mbsf, 132.86 mbsf) the mean size increases by 1.51 μm. Previous morphometric studies of Arkhangelskiella indicate a more continuous size increase throughout the late Campanian–Maastrichtian. The abrupt size increase observed here hints toward a minor hiatus in DSDP Hole 390A separating upper Campanian from lower Maastrichtian sediments. It seems likely that the size increase of Arkhangelskiella reflects changes of various environmental factors like nutrient supply and sea water chemistry (Mg/Ca ratio; Ca concentration). A comparison of morphometric results with previous palaeoecological studies documents a nutrient control for the growth of Arkhangelskiella. Small specimens can be related to more mesotrophic conditions whereas large specimens are linked to oligotrophic surface waters.  相似文献   

2.
The siderolitids from the uppermost Campanian and Maastrichtian deposits of the Pyrenees have been re-studied. This has revealed a high diversity and rapid replacement of taxa, confirming the group as a good tool for high resolution biostratigraphy. Two genera have been found in the uppermost Campanian–Maastrichtian interval in the Pyrenean deposits: Siderolites Lamarck, and Wannierina Robles-Salcedo. Siderolites, with canaliferous spines or denticulate periphery, is represented by four species replacing each other from the latest Campanian to Maastrichtian: Siderolites praecalcitrapoides (latest Campanian), S. pyrenaicus sp. nov. (early Maastrichtian), Siderolites calcitrapoides (late Maastrichtian) and Siderolites denticulatus (late Maastrichtian). Wannierina is characterised by well-developed keels and ramified marginal canals. Two species of Wannierina have been identified and they succeeded one another from latest Campanian to early Maastrichtian: Wannierina vilavellensis sp. nov. (latest Campanian) and Wannierina cataluniensis (early Maastrichtian). The species of the genus Siderolites inhabited shallow waters of tropical to subtropical platforms with moderate-to-high water-energy conditions and those of the genus Wannierina are typical of deep–water low-energy environments but still in the eutrophic zone.  相似文献   

3.
The North American fossil record of dinosaur eggshells for the Cretaceous is primarily restricted to formations of the middle (Albian–Cenomanian) and uppermost (Campanian–Maastrichtian) stages, with a large gap in the record for intermediate stages. Here we describe a dinosaur eggshell assemblage from a formation that represents an intermediate and poorly fossiliferous stage of the Upper Cretaceous, the Santonian Milk River Formation of southern Alberta, Canada. The Milk River eggshell assemblage contains five eggshell taxa: Continuoolithus, Porituberoolithus, Prismatoolithus, Spheroolithus, and Triprismatoolithus. These ootaxa are most similar to those reported from younger Campanian–Maastrichtian formations of the northern Western Interior than they are to ootaxa reported from older middle Cretaceous formations (i.e., predominantly Macroelongatoolithus). Characteristics of the Milk River ootaxa indicate that they are ascribable to at least one ornithopod and four small theropod species. The taxonomic affinity of the eggshell assemblage is consistent with the dinosaur fauna known based on isolated teeth and fragmentary skeletal remains from the formation, although most ornithischians and large theropods are not represented by eggshell. Relative to the Milk River Formation eggshell, similar oospecies occurring in younger Cretaceous deposits tend to be somewhat thicker, which may reflect an increase in body size of various dinosaur lineages during the Late Cretaceous.  相似文献   

4.
A reexamination of large caenagnathid material from the Upper Cretaceous (Campanian) Dinosaur Park Formation of Alberta, Canada, reveals undescribed material referable to Caenagnathus collinsi. A femur, two astragalocalcanei, two metatarsals, two unguals, and a caudal vertebra provide anatomical information on Caenagnathus collinsi. Estimates of femoral length based on the proportions of other oviraptorids suggest that the non-femoral material represents a taxon intermediate in size between Chirostenotes pergracilis from the Dinosaur Park Formation and Anzu wyliei from the Maastrichtian Hell Creek Formation. The femur is within the range of predictions, and confirms the body size estimates based on the other material. The large size of the material and a number of morphological characters distinguish the material from Chirostenotes pergracilis and suggest that it is referable to Caenagnathus collinsi. The relative diversity of caenagnathids in the Dinosaur Park Formation is likely underestimated.  相似文献   

5.
6.
The formation of the eastern Pontides orogenic belt has been widely assigned to a northward subduction of the Neotethyan oceanic slab during the late Mesozoic–Cenozoic. Here we provide an alternate model based on new geological, geochemical and isotopic data. The magmatic activity in the far south of the belt started in the early Campanian with shoshonitic trachyandesites and associated pyroclastics. This sequence is covered by the late Campanian–early Maastrichtian reefal limestones and another stage of high-K volcanism represented by analcimized leucite-rich ultrapotassic rocks of the Maastrichtian–early Paleocene (?) ages. The shoshonitic and ultrapotassic rocks, with K2O contents ranging from 0.26 to 6.95 wt.%, display broadly similar rare earth and multi-element distribution patterns. Both rock types are enriched in LILE and LREE and depleted in HFSE (Nb, Ta and Ti), suggesting a subduction-enriched mantle source for the magma generation. Subsequently, during the late Paleocene, a stage of acidic magmatism (SiO2 of 53.25–73.61 wt.%) that shows adakitic geochemical characteristics including high Sr/Y (46–416) and La/Yb (11–51) and low Y (2.6–12.2 ppm), is documented characterized by melting of a mafic source such as the MORB crust with garnet in the residue. The adakitic magmatism began at ~ 56 Ma and migrated toward the north through time, culminating with porphyritic andesites (~ 47 Ma) that were emplaced in the Gumushane–Bayburt line and its vicinity. North of this line, coeval magmas show typical calc-alkaline nature and continued to develop toward further north until the middle to late Eocene. Based on the spatial and temporal variations in the magmas generated in the eastern Pontides orogenic belt, we propose a new geodynamic model to explain the tectonomagmatic evolution of these rocks and correlate the adakitic magmatism to ridge subduction and slab window process within a south-dipping subduction zone. Our model is in contrast to the previous proposals which envisage partial melting or delamination of thickened lower continental crust due to the collision in the south during the Paleocene–Eocene.  相似文献   

7.
The calcareous nannofossil genus Eiffellithus is an important taxon of mid- to Upper Cretaceous marine sediments in biostratigraphy and paleoceanography. The definition of species within Eiffellithus have been both broadly interpreted and variably applied by nannofossil workers. This is particularly true for the Eiffellithus eximius plexus. While the taxonomy of mid-Cretaceous Eiffellithus species has recently been well-defined, the remaining 35 m.y. history of the genus has not been closely examined. Our investigation of Cenomanian to Maastrichtian sediments from the Western Interior Seaway, Gulf of Mexico, and Western Atlantic gives rise to six new species of Eiffellithus that can be reliably differentiated. In this paper the hitherto used biostratigraphic markers (E. turriseiffelii and E. eximius) have been redefined in a more restricted sense to increase their utility. These refinements in taxonomy reveal an obvious shift in abundance both within the genus and within the nannofossil assemblage as a whole through the Late Cretaceous. In the Cenomanian and Maastrichtian the genus is composed exclusively of coccoliths bearing an X-shaped central cross, such as E. turriseiffelii, while in the Coniacian through Campanian axial-cross forms such as E. eximius comprise more than 60% of the genus. Within the nannofossil assemblage the genus has low abundances in the Cenomanian but increases to >15% of the assemblage in well-preserved samples in the Santonian. In addition, the pattern of diversification of this genus, whereby a x-shaped, diagonal cross repeatedly gives rise to an axial cross by rotation about the central axis, is an excellent example of iterative evolution that may be related to repetitive shifts in Late Cretaceous climatic and paleoceanographic regimes.  相似文献   

8.
During the Campanian and Maastrichtian ages (86–66 million years ago), tyrannosaurids were the predominant large carnivorous dinosaurs throughout the Northern hemisphere. Despite the abundance of skeletal material, the fossil-footprint record of tyrannosaurids has been limited. Here we report a tyrannosaurid trackway in the Lance Formation, Wyoming. The trackway consists of three sequential tracks on a sandstone surface. Based on the age and size of the footprints, the trackmaker can be identified as either a sub-adult Tyrannosaurus rex or a Nanotyrannus lancensis. The trackway offers a record of a tyrannosaurid pace length, which permits the speed of the trackmaker to be calculated at 4.5–8.0 km/h. This result discounts previous speculation that tyrannosaurid walking speeds were notably slower than those of other large theropods.  相似文献   

9.
A symphyseal region of the fused dentaries of a caenagnathid theropod is described from the Upper Cretaceous Nemegt Formation at the Bugin Tsav locality in the Mongolian Gobi Desert. In contrast to the high diversity of Caenagnathidae in the upper Campanian to Maastrichtian in North America, only specimens of a single caenagnathid, Elmisaurus raurus, have been reported in the coeval strata in Asia. Although dentaries are commonly-found bones in the fossil record of Caenagnathidae, the present specimen is the first discovery of caenagnathid dentaries from the upper Campanian to Maastrichtian in Asia. The Nemegt Formation is unique for its diverse oviraptorosaurian fauna that includes both Caenagnathidae and Oviraptoridae as well as the non-caenagnathoid Avimimus portentosus. Hypothesized coexistence of eolian and fluvial environments in the Gobi Basin during the deposition of the Nemegt Formation might explain such co-occurrence of Caenagnathidae and Oviraptoridae.  相似文献   

10.
Reconstruction of Mesozoic and Cenozoic sedimentary ‘cover’ on the Precambrian shield in the Lac de Gras diamond field, Northwest Territories, Canada, has been achieved using Cretaceous and early Tertiary sedimentary xenoliths and contemporaneous organic matter preserved in volcaniclastic sediments associated with late Cretaceous to early Tertiary kimberlite pipe intrusions, and in situ, Eocene crater lake, lacustrine and peat bog strata. Percent reflectance in oil (%Ro) of vitrinite within shale xenoliths for: (i) Albian to mid-Cenomanian to Turonian ranges from > 0.27 to 0.42 %Ro (mean = 0.38 %Ro), (ii) Maastrichtian to early Paleocene from 0.24 to < 0.30%; (iii) latest Paleocene to early middle Eocene 0.15 to < 0.23 %Ro (mean = 0.18 %Ro). These levels of thermal maturity are corroborated by Rock Eval pyrolysis Tmax (°C) and VIS region fluorescence of liptinites, with wavelengths of maximum emission for sporinite, prasinophyte alginite and dinoflagellates consistent with vitrinite reflectance of 0.20 to < 0.50 %Ro. Burial–thermal history modeling, constrained by measured vitrinite reflectance and porosity of shale xenoliths, predicts a maximum burial temperature for Mid to Late Albian strata (∼115 Ma) of 60 °C with ∼1.2 to 1.4 km of Cretaceous strata in the Lac de Gras kimberlite field region prior to major uplift and erosion, which began at 90 Ma. Late Paleocene to middle Eocene volcanic crater lake lacustrine to peat bog strata were only buried to a few hundreds of meters and are in a peat-brown coal stage of thermal maturation.  相似文献   

11.
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation.  相似文献   

12.
An isolated tooth from the late Maastrichtian strata of the Scollard Formation of Alberta, Canada, has been identified as the only record of a non-hadrosaurid hadrosauriform from the Maastrichtian of North America. Here, we demonstrate that this identification is in error and that the tooth pertains to an indeterminate ceratopsid. In addition, we provide full documentation of the published collection of Scollard Formation fossils from which the tooth was originally derived.  相似文献   

13.
The Transylvanian region of Romania preserves some of the most unusual and iconic dinosaurs in the global fossil record, including dwarfed herbivores and aberrant carnivores that lived during the very latest Cretaceous (Maastrichtian) in an ancient island ecosystem (the Haţeg Island). A series of artificial outcrops recently exposed during a hydroelectric project, the Petreşti-Arini section near Sebeş in the Transylvanian Basin, records a 400+ meter sequence documenting the transition from fully marine to terrestrial environments during the Campanian–Maastrichtian. Calcareous nannofossil biostratigraphy indicates that the lower marine beds in this section, part of the uppermost Bozeş Formation, can be assigned to the CC22 biozone, corresponding to the lower–mid upper Campanian. These beds smoothly transition, via a brackish-water unit, into the fully continental Maastrichtian Sebeş Formation. Dinosaur and pterosaur fossils from the uppermost Bozeş Formation can be assigned a late Campanian age making them the oldest well-dated terrestrial fossils from the Haţeg Island, and indicating that the classic Haţeg dinosaur fauna was becoming established by this time, coincident with the first emergence of widespread land areas. Vertebrate fossils occur throughout the overlying Sebeş Formation at the site and are dominated by the small-bodied herbivorous dinosaur Zalmoxes. The dominance of Zalmoxes, and the absence of many taxa commonly seen elsewhere in Maastrichtian sites in Romania, suggests the possibility that either the Petreşti-Arini section preserves a somewhat unusual near-shore environment, or the earliest Haţeg Island dinosaur communities were structured differently from the more diverse communities later in the Maastrichtian. Alternatively, due to the limited sample size available from the studied succession, it is also conceivable that sampling biases give an incomplete portrayal of the Petreşti-Arini local fauna. Support for any one of these alternative hypotheses requires further data from Petreşti-Arini as well as from the larger Transylvania area.  相似文献   

14.
《Cretaceous Research》2007,28(4):621-641
Omphalocyclus is an orbitoidal taxon poorly known from the Late Cretaceous benthonic foraminiferal inventory of the Tethyan realm. Apart from its debatable diagnosis only in the late Maastrichtian of western Tethys, the genus has also been discovered in much older beds in association with Orbitoides and Lepidorbitoides having rather primitive developmental stages. The morphometric analysis of A-forms in successive assemblages, ranging in age from (late) Campanian to terminal Maastrichtian, enables the documentation of phylogenetic changes for the first time. The most conspicuous change is found to be the general increase in the size of the embryon, which on average doubles by the end of the Maastrichtian. This trend is followed by the increase in the number of epi-embryonic chamberlets, which is however, not as significant as the former parameter. Omphalocyclus in the stratigraphically lowermost populations has mainly three to four primary epi-embryonic and no accessory epi-embryonic chamberlets. With the introduction of radial stolons, which seems to have taken place in horizons referable to the Gansserina gansseri Zone, only several accessory epi-embryonic chamberlets arise from the tritoconch. Instead, epi-embryonic chamberlets become rather larger in size and they also cover a wider portion of the embryon along its thick outer wall. Considering the suitable change in embryon size, and also some other morphologic features in successive populations, two new species, O. anatoliensis sp. nov. and O. cideensis sp. nov. are erected in late Campanian and late Campanian-early Maastrichtian populations respectively. The most advanced specimens in the late Maastrichtian are attributed to the long-known species O. macroporus [Lamarck, J.B., 1816. Histoire naturelle des animaux sans vertèbres, vol. 2. Verdière, Paris, pp. 1–568]. Thus, a tentative subdivision scheme comprising three successive species, O. anatoliensisO. cideensisO. macroporus, is proposed.  相似文献   

15.
Speculation regarding Tyrannosaurus in West Texas has been largely based upon a sub-adult tyrannosaurid maxilla from the Javelina Formation (Late Cretaceous–Maastrichtian) of Big Bend National Park. However, a very large anterior caudal vertebra, recently collected from the Javelina Formation, exhibits a morphology that can confidently be assigned to Tyrannosauridae and, because of its size, likely pertains to an adult Tyrannosaurus. The stratigraphic position of the specimen is closely bracketed by titanosaurid remains and further supports coexistence of these taxa. The stratigraphic position of the specimen possibly records one of the earliest occurrences of Tyrannosaurus. If so, Tyrannosaurus likely existed during roughly equivalent temporal intervals in disparate paleobiomes in both northern and southern late Maastrichtian faunal realms of North America.  相似文献   

16.
Palynological and palynofacies analyses were carried out on some Cretaceous samples from the Qattara Rim-1X borehole, north Western Desert, Egypt. The recorded palynoflora enabled the recognition of two informal miospore biozones arranged from oldest to youngest as Elaterosporites klaszii-Afropollis jardinus Assemblage Zone (mid Albian) and Elaterocolpites castelainii–Afropollis kahramanensis Assemblage Zone (late Albian–mid Cenomanian). A poorly fossiliferous but however, datable interval (late Cenomanian–Turonian to ?Campanian–Maastrichtian) representing the uppermost part of the studied section was also recorded. The palynofacies and visual thermal maturation analyses indicate a mature terrestrially derived organic matter (kerogen III) dominates the sediments of the Kharita and Bahariya formations and thus these two formations comprise potential mature gas source rocks. The sediments of the Abu Roash Formation are mostly dominated by mature amorphous organic matter (kerogen II) and the formation is regarded as a potential mature oil source rock in the well. The palynomorphs and palynofacies analyses suggest deposition of the clastics of the Kharita and Bahariya formations (middle Albian and upper Albian–middle Cenomanian) in a marginal marine setting under dysoxic–anoxic conditions. By contrast, the mixed clastic-carbonate sediments of the Abu Roash Formation (upper Cenomanian–Turonian) and the carbonates of the Khoman Formation (?Campanian–Maastrichtian) were mainly deposited in an inner shallow marine setting under prevailing suboxic–anoxic conditions as a result of the late Cenomanian and the Campanian marine transgressions. This environmental change from marginal to open (inner shelf) basins reflects the vertical change in the type of the organic matter and its corresponding hydrocarbon-prone types. A regional warm and semi-arid climate but with a local humid condition developed near/at the site of the well is thought to have prevailed.  相似文献   

17.
The uppermost Cretaceous (upper Campanian–Maastrichtian) marine deposits of the central south Pyrenees host a rich larger benthic foraminiferal fauna and several rudist-rich levels. These marine deposits are directly overlain by the continental facies of the Arén and Tremp Formations, which are famous for their fossil dinosaur remains. Larger benthic foraminiferal distribution documents an important faunal turnover in all the carbonate platform environments within the photic zone, from open marine to littoral areas. Biostratigraphy indicates that this turnover occurred close to the Campanian-Maastrichtian boundary. This is also confirmed by strontium isotope stratigraphy which indicates an earliest Maastrichtian age for the appearance of the larger benthic foraminiferal assemblage constituted by Lepidorbitoides socialis, Clypeorbis mammillata, Wannierina cataluniensis, Orbitoides gruenbachensis, Siderolites aff. calcitrapoides, Fascispira colomi, Omphalocyclus macroporus and Laffiteina mengaudi. In particular, a numerical age of 71 Ma is obtained for the Hippurites radiosus level, just a few meters below the first continental deposits of the Arén sensu stricto Formation. The youngest marine sediments of the central south Pyrenees are early Maastrichtian in age. This is also an important constraint for the age of the end-Cretaceous dinosaur fossil localities of the Tremp basin.  相似文献   

18.
A selachian fauna is described for the first time from the Late Cretaceous (Campanian–Maastrichtian) of Senegal. So far, the Campanian Paki Formation has only yielded a single tooth of Rhombodus sp. whereas the Cap de Naze Formation has yielded a more diverse fauna including juvenile Cretalamna cf. Cretalamna biauriculata, Serratolamna serrata, Carcharias cf. Carcharias heathi, ?Carcharias sp., Squalicorax pristodontus, Schizorhiza stromeri, Parapaleobates sp., Rhombodus binkhorsti and Rhombodus andriesi. Teeth of juvenile Cretalamna largely dominate the assemblage. Such an assemblage confirms a Late Maastrichtian age for the unit 3 in the Cap de Naze Formation. The assemblage, although composed of cosmopolitan taxa, is similar to the contemporaneous selachian assemblage from the phosphates of Morocco.  相似文献   

19.
U–Pb detrital zircon ages are reported from Puncoviscana Formation (late Neoproterozoic–Early Cambrian) and Mesón Group (Late Cambrian) greywackes of northwest Argentina, to constrain provenance and depositional environment.The new data are combined with previously-published detrital zircon ages, to show that Puncoviscana Formation age patterns contain two broad groups: late Mesoproterozoic–early Neoproterozoic (1150–850 Ma) and late Neoproterozoic–Early Cambrian (650–520 Ma); with their relative proportions varying inversely with youngest component age. The 1150–850 Ma age components are dominant in greywackes with oldest late Neoproterozoic components > 600 Ma. The former diminish considerably when late Neoproteozoic components become dominant and younger, to 520 Ma. A northernmost greywacke sample from Purmamarca, Jujuy, is distinctive: whilst its zircon age pattern partly resembles other Puncoviscana Formation samples, it contains no Cambrian–late Neoproterozoic ages, the youngest ages being early Neoproterozoic. This may reflect an early, Neoproterozoic, passive-margin depocentre for the Formation, or an older (early Neoproterozoic) succession within it, which may predate the Brasiliano orogeny in Brazil. The youngest age components, c. 520 Ma, in a greywacke from Rancagua (Cachi, Salta province), dominate an almost unimodal pattern suggestive of contemporary volcanic sources at a late Early Cambrian depocentre. Detrital zircon age patterns of the Mesón Group (Lizoite Formation) have major Cambrian–latest Neoproterozoic components resembling those of the Puncoviscana Formation, but its Mesoproterozoic component is diminished, and there are no significant age components of this age. Small youngest components at c. 500 Ma suggest a maximum Late Cambrian stratigraphic age. The Puncoviscana Formation detrital zircon patterns suggest a provenance in a continental hinterland having a stabilised, extensive late Mesoproterozoic orogen (with minor Paleoproterozoic and Archean precursors), and a more variable late Neoproterozoic orogen containing an evolving sequence of less extensive subcomponents. A direct relationship with the Brazilian Shield is suggested; with sediment supplies originating within active-margin orogens of the interior and collisional orogens at the suture between African and South American cratons, but ultimate deposition in passive-margin environments of western Gondwanaland.  相似文献   

20.
Phosphorites in Egypt occur in the Eastern Desert, the Nile Valley and the Western Desert at Abu Tartur area and present in Duwi Formation as a part of the Middle Eastern to North African phosphogenic province of Late Cretaceous to Paleogene age (Campanian–Maastrichtian). The Maghrabi-Liffiya phosphorite sector is considered as the most important phosphorite deposits in the Abu Tartur area due to its large reserve thickness and high-grade of lower phosphorite bed beside high content of REE. Back scattered electron (BSE) images show framboidal pyrite filling the pores of the phosphatic grains, suggesting diagenetic reducing conditions during phosphorites formation.Electron Probe Micro Analyzer (EPMA) chemical mapping was conducted to examine the variation and distributions of selected elements (P, F, La, Fe, Yb, Si, Ce, W, Eu, S, Ca, Y and Er) within the shark teeth, coprolites and bone fragments. In the teeth W, S, Fe are concentrated along the axis of the teeth, the bone fragments show high concentration of W, Yb, Er and Eu, whereas coprolites are nearly homogenous in composition contains S, Er with some Si as micro-inclusions. Fluorapatite is considered as main phosphate mineral whereas pyrite occurs as pore-filling within the phosphatic grains and cement materials. Maghrabi-Liffiya samples show a wide range in the P2O5 content, between 19.8 wt.% and 29.8 wt.% with an average of 24.6 wt.% and shows low U content ranging from 15 ppm to 34 ppm with an average of 22 ppm. The total REE content in nine samples representing the Maghrabi-Liffiya ranges from 519 to 1139 ppm with an average of about 879 ppm. The calculation of LREE (La–Gd) show indeed a marked enrichment relative to the HREE (Tb–Lu) where LREE/HREE ratio attains 8.4 indicating a strong fractionation between the LREE and HREE. Chondrite-normalized REE patterns of the studied phosphorite samples show a negative Eu anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号