首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A continuous sediment record since 12.3 cal ka bp from Lake Wuxu (south‐eastern Tibetan Plateau) was investigated in terms of the Holocene evolution of the Indian Summer Monsoon. The molar C/N ratio and stable C isotope were used to identify the source of the organic matter as well as climate conditions. The evolution of Lake Wuxu was summarized wihtin two periods. During the first period (early to mid‐Holocene), the lake received increased fluvially transported materials, reflecting variation in the summer monsoon with solar insolation. The lake level declined and water residence time increased because of reduced river discharge during the second period (late Holocene) corresponding to a weakening of the summer monsoon. The organic material revealed a major contribution from lake primary productivity, which showed identical patterns with a high‐resolution isotope record from Dongge Cave, as well as total solar irradiance. Our record from Lake Wuxu indicates that the Holocene evolution of the Indian Summer Monsoon has been driven by the solar forcing at decadal/centennial to millennial time scales. Furthermore, an abrupt decline in the monsoon was detected at around 4.0 cal ka bp , which is probably caused by an increased frequency of EI Nino‐Southern Oscillation events. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
13ka以来东亚夏季风演变过程和全新世适宜期问题   总被引:2,自引:0,他引:2  
基于湖北神农架三宝洞石笋SB43的21个230Th年龄和486个氧同位素数据,建立了13.0-0.2ka时段东亚夏季风强度演化序列,其长期演化趋势与33°N太阳辐射变化基本一致。通过对比三宝洞、董歌洞、阿曼Qunf洞及和尚洞石笋δ18O记录,发现东亚和印度季风强度在轨道尺度上呈同相位变化。石笋SB43、D4 δ18O值与Cariaco盆地Ti含量曲线整体变化一致,相关系数高达0.8,表明热带辐合带(ITCZ)的南北移动可能对亚洲中低纬季风强度起放大作用;全新世适宜期在亚洲季风区不存在显著穿时性,起止时间大体一致,约为10.2~5.7ka。早、中全新世季风强度与极地温度变化趋势一致,相关系数高达0.9,表明当时高纬冰量边界条件可能对亚洲季风强度变化(包括ITCZ的平均位置)具有贡献作用。  相似文献   

3.
Holocene climate change is characterized as generally cooling in high latitudes and drying in tropical and Asian summer monsoonal regions, following the gradual decrease in northern hemisphere summer insolation over the last 12,000 years. However, some recent high-resolution, well-dated monsoon reconstructions seem to suggest an abnormal increase in Asian summer monsoon strength during the late Holocene, against the generally weakening Holocene trend. Here, we synthesize marine and terrestrial moisture records from Asian monsoonal regions that span most of the Holocene period. Late Holocene strengthening of Asian summer monsoon identified from a wealth of the synthesized monsoon records appears to be a robust feature, which warrants further consideration of its possible causes. The possible reverse trend in Asian summer monsoon strength preceding insolation minima seems to have also occurred during previous interglacial periods, based on speleothem records. We further show a similar late Holocene reverse trend in tropical hydrological changes, suggesting that the Asian summer monsoon behavior might be internally linked to the movement of the average position of the ITCZ and ENSO variability during the late Holocene. On the other hand, we suggest that even though several Holocene temperature records indeed show a reverse trend in the late Holocene, the overall evidence for a link between the late Holocene reverse trend in Asian summer monsoon and global temperature changes is insufficient. The reverse trend in Asian summer monsoon during the late Holocene is difficult to be explained with the traditional boreal insolation-driven view. We suggest that this phenomenon might be linked to austral summer insolation changes and/or greenhouse gas increase. However, we caution that additional paleoclimate reconstructions and model simulations are needed to systematically study the spatial pattern and understand underlying mechanism of the late Holocene reverse trend in Asian summer monsoon strength.  相似文献   

4.
李育  张成琦  周雪花  王岳 《沉积学报》2015,33(3):524-536
我国夏季风西北缘是响应长尺度气候变化最为敏感的区域之一, 但夏季风边界变化与千年尺度气候变化之间的关系尚不明确, 相关研究仍缺乏足够证据。夏季风西北缘湖泊沉积物中盐类矿物种类与含量的时空变化, 有助于推测气候变化特征。盐池和猪野泽分别位于祁连山北麓的河西走廊中段和东段, 是研究长时间尺度亚洲夏季风影响区西北边界变化的关键区域。研究全新世千年尺度下, 夏季风西北边界的变化对夏季风西北缘气候变化过程的影响, 对明确季风边缘区千年尺度季风变化机制, 预测未来长尺度气候变化有重要意义。因此, 本文选择盐池古湖泊盐池剖面(YC), 猪野泽青土湖01、02剖面(QTH01、QTH02)等三个剖面, 开展全新世千年尺度下, 亚洲季风西北边界地区湖泊沉积物盐类矿物时空变化对比研究。结果显示:QTH01、QTH02剖面盐类矿物以碳酸盐为主, 硫酸盐类矿物仅零星出现, 而YC剖面硫酸盐类矿物含量相对较高, 同时出现了氯化物型矿物, 全新世气候特征整体较猪野泽更为干旱。末次冰期和早全新世, 三个剖面受季风输送水汽影响明显, 碳酸盐类矿物能较好沉积, 季风边界在这一时期向北扩张, 推进到祁连山中段地区;中全新世QTH01、QTH02剖面受夏季风影响减弱, 湖泊退缩, 碳酸盐类矿物含量达到峰值, YC剖面则表现出极端干旱的气候特征, 硫酸盐类矿物因“盐效应”含量下降, 此时夏季风西北部水汽输送边界位于石羊河流域和盐池流域之间;晚全新世盐池和猪野泽均以风成沉积为主, 气候干旱, 碳酸盐类矿物难以保存, 硫酸盐和氯化物矿物含量出现高值, 说明夏季风西北边界进一步向南迁移。综上所述, 盐类矿物含量变化能良好反应夏季风西北缘全新世气候变化特征, 同时证明, 在全新世千年尺度上, 夏季风西北边界在盐池流域和石羊河流域之间存在变化。  相似文献   

5.
在AMS14C精确定年的基础上,通过南海北部MD05-2905站高分辨率的氧同位素、粒度、元素分析,其结果显示所有指标均在11.2~8.5kaB.P.期间发生异常,根据夏季风指标认为这是夏季风极强事件。将本站位相同纬度(20°N)的夏季平均日辐射量与季风指标进行对比,发现全新世早期(11.2~8.5kaB.P.)东亚夏季风极强事件对应着夏季太阳辐射量最大值和热带辐合带(ITCZ)的位置向北移动,说明全新世早期夏季风突然增强可能是在岁差周期控制下,较高的太阳辐射量驱动了热带辐合带(ITCZ)及其有关的雨场向北移动,在南海北部产生了大量的降水,导致氧同位素偏负、碳酸盐的含量较低以及线性沉积速率较高。这与前人对相邻地区湖光岩玛珥湖的孢粉研究、江西南岭地区泥炭的记录以及中国南方石笋记录的研究结果相吻合。该季风最强事件与阿拉伯海发现的早全新世季风最强事件以及根据格陵兰冰芯记录的早全新世甲烷最大值推测低纬地区湿地扩张相一致,这反映了南海北部全新世早期与全球低纬地区早全新世气候变化格局一致。  相似文献   

6.
Oxygen isotope variations in Chinese stalagmites have been widely interpreted as a record of the amount of East Asian summer monsoonal rainfall. This interpretation infers decreasing monsoonal rainfall from the mid‐Holocene and large, dipolar rainfall oscillations within glaciations. However, the speleothem δ18O variations conflict with independent palaeoclimate proxies (cave δ13C, loess/palaeosol magnetic properties, δ13C alkanes), which indicate no systematic decline in rainfall from the mid‐Holocene, and no glacial rainfall maxima. Using mass balance calculations (which incorporate seasonality effects in both δ18O concentration and amount of precipitation), we demonstrate that the cave δ18O variations cannot be accounted for by summer rainfall changes, or rainfall seasonality or winter cooling, but instead reflect changes in moisture source. A possible driver of the δ18O variations in Chinese stalagmites is precessional forcing of inter‐hemispheric temperature gradients, and resultant shifts in the position and intensity of the subtropical pressure cells. Through such forcing, Indian monsoon‐sourced δ18O may have dominated at times of high boreal summer insolation, and local Pacific‐sourced moisture at low insolation. Suppression of summer monsoonal rainfall during glacial stages may reflect diminished sea and land surface temperatures and the radiative impacts of increased regional dust fluxes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The lightness (L*) and concentrations of Rb, Sr and organic carbon (Corg) have been measured in the age-constrained lake sediment cores recovered from Co Ngoin in the central Tibetan Plateau. Dissolved Sr flux is a dominant control on the variation of Rb/Sr ratios in the sediments. Variations in color and geochemical proxies of Co Ngoin sediments display a continuous history of late glacial to mid-Holocene chemical versus physical weathering intensity in response to past climatic changes between approximately 13,500 and 4500 cal yr B.P. A lower chemical weathering under a late glacial climate was followed by a higher weathering during the Holocene Optimum. Weathering intensity in the central Tibetan Plateau catchment also responds to well-known climatic events, such as the Younger Dryas (YD), and possibly the Holocene Event 5 (HE-5). Although there are differences in time or duration of the climatic events, many of the well-known late glacial to mid-Holocene events occurred in high-elevation Co Ngoin where atmospheric circulation might play a hemispherical role in climatic forcing. The sediment hiatus since c. 4200 14C yr B.P. in the Co Ngoin indicates a period of desiccation that was probably associated with a sharp decrease in summer monsoon strength. Our lascustrine results not only imply catchment weathering variations in response to late glacial to mid-Holocene climatic conditions in the central plateau, but also provide further evidence for global connections between regional climates.  相似文献   

8.
《Quaternary Science Reviews》2007,26(1-2):170-188
High-resolution oxygen isotope (δ18O) profiles of Holocene stalagmites from four caves in Northern and Southern Oman and Yemen (Socotra) provide detailed information on fluctuations in precipitation along a latitudinal transect from 12°N to 23°N. δ18O values reflect the amount of precipitation which is primarily controlled by the mean latitudinal position of the ITCZ and dynamics of the Indian summer monsoon (ISM). During the early Holocene rapidly decreasing δ18O values indicate a rapid northward displacement in the mean latitudinal position of the summer ITCZ and the associated ISM rainfall belt, with decadal- to centennial-scale changes in monsoon precipitation correlating well with high-latitude temperature variations recorded in Greenland ice cores. During the middle to late Holocene the summer ITCZ continuously migrated southward and monsoon precipitation decreased gradually in response to decreasing solar insolation, a trend, which is also recorded in other monsoon records from the Indian and East Asian monsoon domains. Importantly, there is no evidence for an abrupt middle Holocene weakening in monsoon precipitation. Although abrupt monsoon events are apparent in all monsoon records, they are short-lived and clearly superimposed on the long-term trend of decreasing monsoon precipitation. For the late Holocene there is an anti-correlation between ISM precipitation in Oman and inter-monsoon (spring/autumn) precipitation on Socotra, revealing a possible long-term change in the duration of the summer monsoon season since at least 4.5 ka BP. Together with the progressive shortening of the ISM season, gradual southward retreat of the mean summer ITCZ and weakening of the ISM, the total amount of precipitation decreased in those areas located at the northern fringe of the Indian and Asian monsoon domains, but increased in areas closer to the equator.  相似文献   

9.
Optically Stimulated Luminescence dating, grain-size analysis and magnetic susceptibility measurements were conducted on the Fanjiaping loess section, from the western Chinese Loess Plateau. The results confirm that last glacial high-frequency climatic shifts were documented in mid-latitude continental archives. The grain-size record indicated that coarse-grained sediments with horizontal bedding and channel-fill structures were only deposited in several short intervals, equivalent to the beginning of marine oxygen isotope stage (MIS) 4 and the early to middle MIS 3. This probably implies brief rainfall intensification of the Asian summer monsoon, and its disappearance since the late MIS 3 to MIS 2 may have been a response to significant glacial cooling in the Northern Hemisphere. Previous investigations revealed high sea-surface temperatures at high latitudes at the start of MIS 4, and the early to middle MIS 3 intensification of summer insolation in the Northern Hemisphere, implying evident climate amelioration. Climate improvement favors boreal forest recovery, enhancing both winter and summer air temperatures. The resultant smaller equator-polar temperature gradient probably helped the moisture-laden summer monsoon to penetrate northward. This study thus provides new significant information about the response of terrestrial loessic palaeoenvironments to millennial-timescale climatic fluctuations during the last glacial period.  相似文献   

10.
The evolution of Ancient Silk Road(ASR) was deeply influenced by late Holocene moisture changes in Arid Central Asia(ACA). Nevertheless, controversies in Holocene moisture change pattern of ACA and poorly–constrained age models of related studies have made the discussion about late Holocene moisture changes in ACA and their influences on the evolution of ASR difficult. Recently, a high–resolution age model during the late Holocene was established for Kalakuli Lake, a small glacier lake located in the core area of ACA. A thorough rock magnetic investigation was carried out on Kalakuli Lake sediments based on this age model. The magnetic mineral assemblage of Kalakuli Lake sediments is still dominated by primary magnetite despite minor diagenetic effects. Comparisons of rock magnetic records to parameters previously used as indicator of glacier fluctuations suggest that clastic input to Kalakuli Lake was high(low) and magnetic grain size is relatively larger(smaller), when glaciers on Muztagh Ata advanced(retreated). The ARM/SIRM ratio, a magnetic grain size proxy, is directly related to lake hydrodynamics, which are ultimately controlled by glacier fluctuations on Muztagh Ata as the result of regional moisture changes. Late Holocene moisture changes indicated by the ARM/SIRM ratio are consistent with cool/wet and warm/dry oscillations indicated by the unweighted average of biomarker hydrogen isotopic data of the C_(26) and C_(28) n–alkanoic acids in a previous study about Kalakuli Lake, most moisture change records of the core area of ACA and winter insolation of the Northern Hemisphere, but opposite to Asian monsoon evolution. Given Asian monsoon and the westerlies are mutually inhibited, we propose that late Holocene moisture changes in the core area of ACA were controlled by the intensity of Asian monsoon versus the westerlies under the governance of solar insolation. Generally increased moisture since the late Holocene indicated by the ARM/SIRM ratio favored cultural exchange and integration between the western and the eastern Eurasia, which paved the way for the formation of ASR. Coincidence between significant increase in moisture at ~200 BC suggested by the ARM/SIRM ratio and the formation of ASR indicates moisture as an important factor that facilitated the formation of ASR. The onsets of three prosperity periods of ASR in the history generally correspond to periods when moisture was relatively high, nevertheless, stagnant periods of ASR do not coincide with periods when moisture was relatively low in the core area of ACA. Disorganized correlations between stagnant periods of ASR and moisture changes in the core area of ACA suggest that moisture is not the decisive factor influencing the evolution of ASR.  相似文献   

11.
The environmental history of the Northern Rocky Mountains was reconstructed using lake sediments from Burnt Knob Lake, Idaho, and comparing the results with those from other previously published sites in the region to understand how vegetation and fire regimes responded to large-scale climate changes during the Holocene. Vegetation reconstructions indicate parkland or alpine meadow at the end of the glacial period indicating cold-dry conditions. From 14,000 to 12,000 cal yr B.P., abundant Pinus pollen suggests warmer, moister conditions than the previous period. Most sites record the development of a forest with Pseudotsuga ca. 9500 cal yr B.P. indicating warm dry climate coincident with the summer insolation maximum. As the amplification of the seasonal cycle of insolation waned during the middle Holocene, Pseudotsuga was replaced by Pinus and Abies suggesting cool, moist conditions. The fire reconstructions show less synchroneity. In general, the sites west of the continental divide display a fire-frequency maximum around 12,000–8000 cal yr B.P., which coincides with the interval of high summer insolation and stronger-than-present subtropical high. The sites on the east side of the continental divide have the highest fire frequency ca. 6000–3500 cal yr B.P. and may be responding to a decrease in summer precipitation as monsoonal circulation weakened in the middle and late Holocene. This study demonstrated that the fire frequency of the last two decades does not exceed the historical range of variability in that periods of even higher-than-present fire frequency occurred in the past.  相似文献   

12.
Long sediment cores (12.5 and 13.5 m) from two lakes in Yunnan Province were used to infer the paleoclimate of southwest China over the past 50,000 yr. During the Holocene and marine isotope stage (MIS 3), bio-induced carbonate precipitation and organic matter (OM) production was high, suggesting warm temperatures and high primary productivity. In contrast, sediment inorganic carbon (IC) and organic carbon (OC) concentrations were low in last glacial deposits from 38,000 to 12,000 cal yr B.P., indicating cool temperatures and low productivity. The 50,000-yr record has alternating peaks of carbonate and coarse-grain (>38 μm) quartz that reflect warm, moist interglacial or interstadial conditions alternating with cold, dry glacial or stadial conditions, respectively. Spectral analysis of the carbonate and quartz signals reveals power concentrated at periods of 7200 and 8900 cal yr, respectively, that may reflect a nonlinear climate response to precessional forcing at a time of reduced eccentricity modulation (McIntyre and Molfino, 1996). Oxygen isotope values of calcite from Yunnan lake cores indicate the summer monsoon was weak during the last glaciation from 50,000 to 12,000 cal yr B.P. The summer monsoon intensified between 12,000 and 8000 cal yr B.P., but weakened gradually in response to insolation forcing during the mid-to-late Holocene. Our results support the Overpeck et al. (1996) model that posits a weak summer monsoon during the last glaciation that responded nonlinearly to insolation forcing when its intensity was affected by Eurasian snow cover and ice-sheet extent. The summer monsoon intensified and responded linearly to seasonal insolation forcing in the Holocene when ice volume diminished.  相似文献   

13.
猪野泽记录的季风边缘区全新世中期 气候环境演化历史*   总被引:4,自引:16,他引:4  
通过季风边缘区石羊河古终端湖猪野泽QTL剖面年代学及沉积物粒度、碳酸盐、有机碳、碳氮比和有机质稳定同位素等多项气候代用指标的综合分析,建立了季风边缘区9~3cal.kaB.P. 的古气候演化序列。结果表明,9cal.kaB.P. 到7.8cal.kaB.P. 期间,流域的水分条件和温度逐渐上升,植被状况好转,此时气候逐渐转暖湿;而在7.8~7.5cal.kaB.P. 出现了显著的百年尺度的干旱事件,沉积物主要以砂质沉积为主,此时湖泊生产力显著下降;全新世期间最为暖湿的气候适宜期出现在7.5~5.0cal.kaB.P.;约5.0cal.kaB.P. 以来,该区域出现了较为明显的干旱化趋势。另外,对猪野泽地区的白碱湖的湖泊地貌学和年代学研究表明该区域在7.5~5.0cal.kaB.P. 出现了3次高湖面,并且湖岸堤时序变化指示了全新世后半期湖泊逐渐退缩的过程进而指示该区域出现了显著的干旱化趋势。  相似文献   

14.
末次冰消期晚期青藏高原东北部气候变化   总被引:12,自引:1,他引:12       下载免费PDF全文
我国最大的内陆封闭湖泊青海湖的沉积岩芯为研究末次冰期/全新世过渡期间青藏高原东北部的环境变化和季风降水演变提供了连续高分辨率环境档案。对两孔岩芯的多学科研究结果表明:大约14000~11600aB.P.期间气候干冷,湖泊的自生碳酸盐和有机质生产率远低于全新世;季节性入湖径流量在11600aB.P.突然增大;从10700aB.P.起,夏季蒸发量突然增大,干旱化作用导致碳酸盐滩湖环境;区域降水量在10000aB.P.的增大结束了滩湖环境,标志了早全新世温暖较湿气候的开始。全新世早期的青海湖水深比现在要浅20m左右,表明那时的有效湿度显然比现在要低很多。14000~10000aB.P.期间青海湖水深不超过6m,说明在末次冰消期的这一时段中,青藏高原东北部没有形成大规模冰融水。在10700~10000aB.P.期间突发的干旱事件与西欧的新仙女木事件(YoungerDryas)年代相当,但没有气候变冷的证据。青藏高原东北部末次冰消期的气候变化表现了明显的阶段性特征和有效湿度的突然改变。区域季风降水量和夏季温度的变化决定了该过渡期的这种变化格局  相似文献   

15.
Two marine pollen diagrams for sediments off the southwest coast of India provide a 20,000-yr history of the nearby continental vegetation, determined by the monsoon climate, within the framework of the isotopic stratigraphy. Two important phases of the evolution of the monsoon climate are a very arid period about 22,000–18,000 yr B.P. and a very humid period culminating at 11,000 yr B.P. The very arid period corresponds to the lowest pollen representation of mangrove vegetation, which is used here as an indirect indicator of monsoonal runoff. This aridity is due to a very weak southwest airflow, a great reduction of summer monsoonal rainfall, and reduced runoff of the western Ghats rivers. The extension of the monsoon over India after the last glacial maximum has been a gradual process following the northward progression of the Intertropical Convergene Zone. The very humid period, corresponding to the highest pollen representation of mangrove vegetation and the heaviest summer rainfall, is a climatic response to the maximum summer insolation of the Northern Hemisphere at 11,000 yr B.P.  相似文献   

16.
Pollen‐based quantitative estimates of seasonal precipitation from Lake Pergusa and lake‐level data from Lake Preola in Sicily (southern Italy) allow three successive periods to be distinguished within the Holocene: an early Holocene period before ca. 9800 cal a BP with rather dry climate conditions in winter and summer, a mid‐Holocene period between ca. 9800 and 4500 cal a BP with maximum winter and summer wetness, and a late Holocene period after 4500 cal a BP with declining winter and summer wetness. This evolution observed in the south‐central Mediterranean shows strong similarities to that recognized in the eastern Mediterranean. But, it contrasts with that reconstructed in north‐central Italy, where the mid‐Holocene appears to be characterized by a winter (summer) precipitation maximum (minimum), while the late Holocene coincided with a decrease (increase) in winter (summer) precipitation. Maximum precipitation at ca. 10 000–4500 cal a BP may have resulted from (i) increased local convection in response to a Holocene insolation maximum at 10 000 cal a BP and then (ii) the gradual weakening of the Hadley cell activity, which allowed the winter rainy westerlies to reach the Mediterranean area more frequently. After 4500 cal a BP, changes in precipitation seasonality may reflect non‐linear responses to orbitally driven insolation decrease in addition to seasonal and inter‐hemispheric changes of insolation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model' in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.  相似文献   

18.
Two sediment cores recovered from Dahu Swamp, which is located in eastern Nanling Mountains in south China, were selected for investigation of palaeoclimatic changes. Multi‐proxy records of the two cores including lithological variation, organic carbon isotope ratio, dry bulk density, organic matter content, magnetic susceptibility, humification degree, median grain size and geochemical proxies reveal that during the last deglaciation three drier phases correspond to the Oldest, Older and Younger Dryas cooling events, and the intercalated two wetter phases synchronise with the Bølling and Allerød warming events. The Holocene Optimum, which was resulted from a strengthening of the East Asian (EA) summer monsoon, occurred in the early and mid Holocene (ca. 10–6 cal. ka BP). In the mid and late Holocene (ca. 6–3 cal. ka BP), a prevailing dry climate suggested a weakening of the EA summer monsoon. The general trend of Holocene climatic changes in this study agrees with the 25° N summer solar insolation, suggesting that orbitally induced insolation may have played an important role in the Holocene climate in the study region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Throughout northeast China, the widely distributed peatlands have formed a large carbon (C) pool. However, the relationship between peatland initiation and climate controls is still poorly documented and understood. Understanding the responses of these C‐rich ecosystems to past climate change will provide useful insights into projecting the fate of peatland C in the future. In this study, we present a detailed historical reconstruction of peatland development in northeast China based on 312 basal peat dates, and examine the relationship between Holocene peatland dynamics and climate sensitivity. Our results indicate that peatland initiation started in the early Holocene, and that the majority of peatlands were initiated by and developed during the late Holocene. After the most intensive initiation period of 4.2–0.8 ka, the rate of peatland development slowed, which was concomitant with decreasing insolation and monsoon intensity. The widespread peatland initiation in the late Holocene might have been caused by the cool and moist climate patterns. The optimum timing of the peatland development was not uniform across northeast China, and these spatio‐temporal differences indicate the influences of regional climate and terrain on peatland initiation. Peat‐core data show variations in the long‐term apparent rate of C accumulation (LORCA) during the Holocene, with an average rate of 37.2 g C m?2 a?1. The peak LORCA occurred during 10.5–9.0 ka, probably in response to higher temperatures and stronger East Asia summer monsoon intensities. Both temperature and humidity are important factors influencing the peatland initiation and C dynamics in this region.  相似文献   

20.
Variability in East Asian summer monsoon precipitation during the Holocene remains of debate. In this study, we use a closed lake with well-dated lake beach ridges located on the margin of the East Asian summer monsoon, a region highly sensitive to monsoon precipitation changes, to obtain a temporal sequence of water volume in North China. The elevation of each beach ridge calibrated to the modern lake level was surveyed. Optically stimulated luminescence dating of undisturbed sediments of beach ridges was performed. The lake area and water volume corresponding to each beach ridge were calculated using a digital elevation model. This study reveals relatively reduced monsoon precipitation from ~12 to 7 ka interrupted by strengthening of the monsoon circulation to a maximum from ~7 to ~5 ka and followed by greatly reduced monsoon intensity until the present day. These results demonstrate that changes in the East Asian summer monsoon precipitation may not be directly driven by global temperature or atmospheric CO2 content. Rather, we suggest that variation in the the monsoon margin precipitation is probably mainly driven by ice volume and subordinately by the summer solar insolation difference between mid-latitude land and low-latitude ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号