首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

2.
We present chironomid and pollen records from the Huelmo site (~41°30′S), NW Patagonia, to examine in detail the timing and structure of climate changes during the Last Glacial Termination in the southern mid-latitudes. The chironomid record has the highest temporal and taxonomic resolution for this critical interval, and constitutes the first account of midge faunas at the culmination of the Last Glacial Maximum (LGM) for the region. The chironomid record suggests cold and wet conditions during the LGM, followed by deglacial warming between 17.6 and 16.8 cal kyr BP. Relatively warm conditions prevailed between ~15–14 cal kyr BP, followed by a reversal in trend with cooling pulses at ~14 and 13.5 cal kyr BP, and warming at the beginning of the Holocene. Cool-temperate conditions prevailed during the Huelmo Mascardi Cold Reversal (HMCR) which, according to chironomid data, exhibits a wet phase (13.5–12.8 cal kyr BP) followed by a conspicuous drier phase (12.8–11.5 cal kyr BP). The chironomid and pollen records from the Huelmo site indicate step-wise deglacial warming beginning at 17.6 cal kyr BP, in agreement with other paleoclimate records from NW Patagonia and isotopic signals from Antarctic ice cores. Peak warmth during the Last Glacial Termination was achieved by ~14.5 cal kyr BP, followed by a cooling trend that commenced during the Antarctic Cold Reversal, which later intensified and persisted during the HMCR (13.5–11.5 cal kyr BP). We observe a shift toward drier conditions at ~12.8 cal kyr BP superimposed upon the HMCR, coeval with intense fire activity and vegetation disturbance during Younger Dryas time.  相似文献   

3.
A sediment core from Lake Arapisto, Finland, was examined for fossil diatom assemblages to reconstruct changes in Holocene nutrient availability. Our aim was to investigate the long-term relationship between lake trophic status and climate by comparing the diatom-based phosphorus reconstruction with paleoclimatic proxies. Our results showed that the cold early Holocene was characterized by elevated nutrient conditions concurrent with newly exposed fertile ground. As the climate rapidly warmed and ice sheet further retreated, the catchment vegetation developed, which resulted in decreased nutrient flux into the lake. The Holocene Thermal Maximum (HTM), between ~ 8000 and 4000 cal yr BP, was characterized by oligotrophic conditions, which may have been caused by low effective precipitation and stable watershed vegetation. After the HTM, the lake became more productive. There was no particular increase in the trophic state that could be connected to more recent human influence. Although lake productivity has been shown to be affected by temperature, our record indicated that the nutrient dynamics were driven by complex interactions between changes in temperature, precipitation, catchment, and in-lake processes. Understanding of long-term nutrient dynamics and the associated processes can help in resolving relationships between lake productivity and climate during past and present climate changes.  相似文献   

4.
Botanical macrofossil analysis of a more than 9000 years old, radiocarbon dated peat sequence of a moss peat bank from South Georgia, shows a clear evolution in the vegetation. Seven ecological phases could be distinguished and they can be interpreted in terms of climate development during the Holocene. Until 2200 years ago, Warnstorfia fontinaliopsis was the dominant moss species pointing to a wet environment. Lower numbers of this species in association with the presence of drier species are assumed to indicate drier periods, such as occurring between ca 6000–5200 and 4400–3400 cal yr BP. The most prominent and definitive vegetation change took place around 2200 cal yr BP. A Polytrichum–Chorisodontium moss peat bank was formed, which is still growing there today. The forcing mechanism for this vegetation change is thought to be a temperature decrease, rather than a precipitation decrease. This conclusion is mainly based on the fact that, today, moss peat banks have their optimal occurrence range in the maritime Antarctic, a region were the mean annual temperature is ca 4 °C lower than on South Georgia. The remarkable change in the moss bank vegetation at 2200 cal yr BP raises the question whether this moment was only a short climatic deterioration, or a definitive change to a cooler and wetter climate after a Holocene climatic optimum period.  相似文献   

5.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

6.
《Quaternary Science Reviews》2007,26(5-6):705-731
Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial–interglacial transition (ca 15.8–14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6–13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1–12.1 cal kyr BP), warmer and wetter conditions during ca 12.1–8.5 cal kyr BP, a warm and dry phase ca 8.5–5.9 cal kyr BP, cold and wet conditions during ca 5.9–1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6–13.1 and ca 12.1–8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9–1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.  相似文献   

7.
The palaeoenvironmental history has been studied based on palynology of a sedimentary profile from the Alpes de São Francisco bog (29°29′35′′S, 50°37′18′′W), São Francisco de Paula municipality, Rio Grande do Sul eastern Plateau, extreme Southern Brazil. The results indicate a regional cold and dry climate between 25,000 and 12,500 yr BP, interpreted from the grassland vegetation, forest taxa were present in refuges and the shallow local lake began to fill in. Climatic conditions became more aride after 16,000 yr BP, when grassland became rare. From 12,500 yr BP onwards, the climate began to change and at 11,000–9700 yr BP a warm and moist climate permitted the slight migration of pioneer arboreal taxa from refuges and locally a marsh formation. Between 9700 and 6500 yr BP a warm and dry climate resulted in reduction of grassland, confined the forest in refuges, dried out the marsh. The gradual increase of humidity between 6500 and 4000 yr BP allowed migration of forests from refuges and a bog developed. Between 4000 and 2000 yr BP Araucaria forest spread, indicating moister climate. The local bog expanded. From 2000 yr BP onwards, humid but warmer climate seems to result in a lower reproductive capacity of Araucaria forest taxa limiting its expansion. The bog reached the present-day in a decline condition. The results are compared to previous records from Southern Brazil highlands and some places from Argentina in order to better elucidate the climatic and vegetational history of these important South America areas during the late Quaternary.  相似文献   

8.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

9.
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilexO. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.  相似文献   

10.
Palaeosalinity records for groundwater-influenced lakes in the southwest Murray Basin were constructed from an ostracod-based, weighted-averaging transfer function, supplemented with evidence from Campylodiscus clypeus (diatom), charophyte oogonia, Coxiella striata (gastropod), Elphidium sp. (foraminifera), Daphniopsis sp. ephippia (Cladocera), and brine shrimp (Parartemia zietziana) faecal pellets, the δ18O of ostracods, and > 130 μm quartz sand counts. The chronology is based on optically stimulated luminescence and calibrated radiocarbon ages. Relatively wet conditions are marked by lower salinities between 9600 yr and 5700 yr ago, but mutually exclusive high- and low-salinity ostracod communities suggest substantial variability in effective precipitation in the early Holocene. A drier climate was firmly in place by 4500 yr and is marked at the groundwater-dominated NW Jacka Lake by an increase in aeolian quartz and, at Jacka Lake, by a switch from surface-water to groundwater dominance. Short-lived, low-salinity events at 8800, 7200, 5900, 4800, 2400, 1300 and 400 yr are similar in timing and number to those recorded on Australia's southern continental shelf, and globally, and provide evidence for the existence of the ~ 1500-yr cycle in mainland southern Australia. We surmise that these are cool events associated with periodic equatorward shifts in the westerly wind circulation.  相似文献   

11.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

12.
Pollen analysis from a peat-bog sequence located at 50° 24′ S, 72° 42′ W in the Subantarctic forest – Patagonian steppe ecotone gives information about vegetation and climate changes in Southwestern Patagonia since the glacier retreat. After 11 000 cal yr BP a change from grass steppe to open Nothofagus forest indicates that climatic conditions became rapidly warmer. Development of a closed Nothofagus forest between 5800 and 3200 cal yr BP is interpreted as precipitation increase. During the late Holocene colder climate conditions prevail in response to Neoglacial events. After ca 3000 cal yr BP Nothofagus forest became opener, and after 800 cal yr BP grass steppe expanded. Changes in the forest-steppe ecotone composition as well as the ecotone longitudinal shifts suggest changes in temperature and precipitation. Present-day mean annual precipitation between 300 and 400 mm is associated with grass steppe, and 500–600 mm with a greater forest representation. During the last century, low presence of forest in the area may be related to European settlement and repeated flooding caused by periodic advances of Perito Moreno glacier.  相似文献   

13.
《Quaternary Science Reviews》2007,26(9-10):1432-1453
The sediments of a small lake on Nordkinnhalvøya, Finnmark, Norway, were investigated in order to test the hypothesis that this region was sensitive to centennial–millennial climatic fluctuations during the Holocene related to changes in ocean circulation. Sedimentation at the site began during the Younger Dryas, although the site chronology, developed using a series of 14C age measurements, reveals an early Holocene hiatus in accumulation. Pollen analysis confirmed that the regional vegetation responded to Holocene climatic variability at centennial–millennial time scales and provided data used to make quantitative palaeoclimate reconstructions. The latter indicate that marked changes in seasonality characterised Holocene climatic fluctuations. Intervals with warmer summers, higher temperature sums and higher precipitation, but cooler winters and generally reduced moisture availability, alternated with intervals with cooler summers, lower temperature sums, lower precipitation, warmer winters and greater moisture availability. The former conditions were more prevalent between ca 8950 and 3950 cal BP, whereas the latter were predominant before ca 8950 and since ca 3950 cal BP. Sediment geochemistry indicates minerogenic material deposited in the lake was probably derived from two or more distinct sources or transport pathways that differed in their responses to palaeoclimatic conditions. A series of cryptotephras were located, although the small size of the shards rendered them unsuitable for electron microprobe analyses. Time-series analysis of pollen analytical and sediment geochemical data indicates that each exhibits statistically significant periodic behaviour (at periods of ca 190, 410, 1050, 1650 and 1810 yr). The periods detected suggest this behaviour may reflect regional expression of climate system responses to solar variability and/or of effects upon tides and ocean circulation of periodic lunar orbital variation. Comparison with records of fluctuations in ocean thermohaline circulation strength indicate some concordance with respect to timing of warmer and cooler intervals, but also some differences. The 8.2 ka event, that is evident in marine records from the Barents Sea, is clearly expressed by both the palaeovegetation and geochemical records. Distinctive temporal behaviour of the palaeovegetation and of different geochemical components indicates complexity in the underlying causes and mechanisms of regional climatic variability; ocean circulation variability alone cannot account for the complex climatic variability observed.  相似文献   

14.
《Quaternary Science Reviews》2007,26(17-18):2229-2246
A sediment core recovered from Garba Guracha, a glacial lake at 3950 m altitude in the Bale Mountains of Ethiopia, at the boundary of the Ericaceous and Afroalpine vegetation belts, provides a 16,700-year pollen record of vegetation response to climatic change. The earliest vegetation recorded was sparse and composed mainly of grasses, Amaranthaceae–Chenopodiaceae and Artemisia, indicating an arid climate. At 13,400 cal BP, Amaranthaceae–Chenopodiaceae pollen declined sharply and Cyperaceae increased, suggesting a change to moister conditions. The Younger Dryas interval is represented by a small increase in Artemisia and reduced Cyperaceae, indicating aridity. Just after the start of the Holocene (11,200 cal BP), the upper altitudinal limit of the Ericaceous belt rose, and woody Ericaceous vegetation extended across the Sanetti plateau, in response to increased moisture and temperature. The marked change from clastic to organic lake sedimentation at this time reflects the increase in woody vegetation cover in the lake catchment, accompanied by soil stabilisation, and increased leaf litter and soil humus content. From about 6000 cal BP, and especially after 4500 cal BP, mid-altitude dry Afromontane Juniper–Podocarpus forests developed on the northern slopes of the mountains in response to reduced rainfall in a shortened wet season. Erica shrub and forest decreased in area and altitude, and the Afroalpine ecosystem expanded on the plateau. Podocarpus declined from about 2000 cal BP, as Juniperus increased to its present dominance at 2500–3300 m altitude. Human impact on the high-altitude Afroalpine and Ericaceous vegetation has been relatively minor, confirming that the endemic biodiversity of the Ethiopian mountains is a legacy of natural Holocene vegetation change, following repeated expansion and contraction of the upland ecosystems during the Quaternary.  相似文献   

15.
《Quaternary Science Reviews》2007,26(13-14):1736-1758
This paper presents a high-resolution lake-level record for the Holocene at Lake Accesa (Tuscany, north-central Italy) based on a range of sedimentological techniques validated in previous studies, with a chronology derived from 43 radiocarbon dates and four tephra layers. It gives evidence of centennial-scale fluctuations with major highstands at ca 11 500, 11 100, 10 200, 9400, 8200, 7300, 6200, 5700–5200, 4850, 4200, 3400, 2600, 1200 and 400 cal BP. Except for the Early Holocene until ca 10 500 cal BP, this pattern of hydrological changes appears to be in agreement with the regional pattern established for west-central Europe. Correlations with the Preboreal oscillation and the 8.2 ka event as well as with the atmospheric 14C residual series suggest that lake-level fluctuations developed at Accesa in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity. For the period after 4500 cal BP, correlations with other palaeohydrological records from central Italy indicate that lake-level changes reconstructed at Accesa were mainly driven by climatic variations while anthropic activities and local geomorphological factors only played a secondary role. The Accesa lake-level record also highlights millennial-scale variations with a maximal lowstand at ca 9200–7700 cal BP contemporaneous with Sapropel event 1 in the Mediterranean. It was followed by generally higher lake-level conditions. This appears to be the opposite of that observed in Sicily (southern Italy) where a lake-level maximum developed at ca 9000–8200 cal BP and was followed by a general trend towards aridification. These opposite patterns were interpreted as contrasting hydrological responses to orbitally induced changes in summer insolation. This interpretation has to be tested by further lake-level studies in the central Mediterranean region. Finally, correlations between major lowstands and periods of maximal representation of Quercus ilex point to convergences between climate oscillations and Holocene vegetation history in the Accesa region. However, the maximal representation of Abies during the first half of the Holocene, including a time window where lake level reached a minimal level, suggests a more subtle impact of seasonality processes.  相似文献   

16.
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabi1ted the Sannai-Maruyama site from 5.9 to 4.2 ± 0.1 cal kyr BP However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4–7.9, 7.0–5.9, 5.1–4.1, and 2.3–1.4 cal kyr BP) and four of low (?8.4, 7.9–7.0, 5.9–5.1, and 4.1–2.3 cal kyr BP) SST. Thus, each SST cycle lasted 1.0–2.0 kyr, and the amplitude of fluctuation was about 1.5–2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal kyr BP, but was clearly increased between 5.9 and 4.0 cal kyr BP, because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 ± 0.1 cal kyr BP), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal kyr BP, in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 ± 0.1 cal kyr BP, abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in the pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0–4.3 cal kyr BP) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.  相似文献   

17.
A ~6.35 m core (06SD) was retrieved from Lake Shudu, Yunnan Province, China. The sediments spanning the period ~22.6–10.5 kcal. yr BP (6.35–1.44 m) were analysed using a combination of variables including pollen, charcoal, particle size, magnetic susceptibility and loss-on-ignition. The resulting palaeorecord provides a high-resolution reconstruction of Late Pleistocene to Early Holocene climatic and environmental changes in southwestern China. Our findings indicate that from c. 22.6 to 17.7 kcal. yr BP, vegetation assemblages were primarily aligned to sparse xerophytic grassland/tundra or cold-tolerant boreal Pinus forest, indicating that climatic conditions in southwestern China were cold and dry. However, from c. 17.7 to 17.4 kcal. yr BP, the Lake Shudu record is punctuated by marked environmental changes. These include the establishment of denser vegetation cover, a marked expansion of boreal Pinus forest and enhanced hydrological activity in the catchment over centennial timescales, perhaps suggesting that stepwise variations in the Asian Monsoon were triggering fundamental environmental changes over sub-millennial timescales. Thereafter, the pollen record captures a period of environmental instability reflected in fluctuations across all of the variables, which persists until c. 17.1 kcal. yr BP. After c. 17.1 kcal. yr BP, the expansion of steppe vegetation cover and cold–cool mixed forest consisting of mesophilous vegetation such as Tsuga and Picea, thermophilous trees including Ulmus and deciduous Quercus inferred from the Lake Shudu pollen record point to the establishment of warmer, wetter and perhaps more seasonal conditions associated with a strengthening Asian Summer Monsoon during the shift from Pleistocene to Holocene climatic conditions.  相似文献   

18.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

19.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

20.
A 13,100-year-long high-resolution pollen and charcoal record from Foy Lake in western Montana is compared with a network of vegetation and fire-history records from the Northern Rocky Mountains. New and previously published results were stratified by elevation into upper and lower and tree line to explore the role of Holocene climate variability on vegetation dynamics and fire regimes. During the cooler and drier Lateglacial period, ca 13,000 cal yr BP, sparsely vegetated Picea parkland occupied Foy Lake as well as other low- and high-elevations with a low incidence of fire. During the warmer early Holocene, from ca 11,000–7500 cal yr BP, low-elevation records, including Foy, indicate significant restructuring of regional vegetation as Lateglacial Picea parkland gave way to a mixed forest of Pinus-Pseudotsuga-Larix. In contrast, upper tree line sites (ca >2000 m) supported Pinus albicaulis and/or P. monticola-Abies-Picea forests in the Lateglacial and early Holocene. Regionally, biomass burning gradually increased from the Lateglacial times through the middle Holocene. However, upper tree line fire-history records suggest several climate-driven decreases in biomass burning centered at 11,500, 8500, 4000, 1600 and 500 cal yr BP. In contrast, lower tree line records generally experienced a gradual increase in biomass burning from the Lateglacial to ca 8000 cal yr BP, then reduced fire activity until a late Holocene maximum at 1800 cal yr BP, as structurally complex mesophytic forests at Foy Lake and other sites supported mixed-severity fire regimes. During the last two millennia, fire activity decreased at low elevations as modern forests developed and the climate became cooler and wetter than before. Embedded within these long-term trends are high amplitude variations in both vegetation dynamics and biomass burning. High-elevation paleoecological reconstructions tend to be more responsive to long-term changes in climate forcing related to growing-season temperature. Low-elevation records in the NRM have responded more abruptly to changes in effective precipitation during the late Holocene. Prolonged droughts, including those between 1200 and 800 cal yr BP, and climatic cooling during the last few centuries continues to influence vegetation and fire regimes at low elevation while increasing temperature has increased biomass burning in high elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号