首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

2.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

3.
About 4,300 years ago, 10 km3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40–75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude.Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.  相似文献   

4.
This study uses on-land and offshore geological and structural data to demonstrate that a huge lateral collapse involved the SE flank of Nisyros volcano. The collapse beheaded the summit part of the volcano and also involved the submarine portion of the slope, producing a large debris avalanche deposit with a volume of about 1 km3 which has been recognized on the sea floor. On-land, stratigraphic and structural data indicate that a thick succession of lava flows (Nikia lavas) was emplaced in a huge horseshoe-shaped depression open seaward and extending below the sea. The magma-feeding system in the volcano, pre-dating and following the collapse, was structurally influenced by a dominant NE–SW direction, which is perpendicular to the newly-recognised sector collapse. The NE–SW structural trend is consistent with the regional tectonic structures found offshore around Nisyros and with the related NW–SE extension direction. We suggest that the lateral magma pressure produced by repeated magma injections along tectonic discontinuities contributed to destabilise the volcano flank. The occurrence of a pyroclastic deposit that mantled the scar left by the collapse suggests that a magma batch might have been injected inside the volcano and triggered the collapse. The lavas of the pre-collapse edifice have been deposited in alternating submarine and subaerial environments, suggesting that vertical movements might also be a major triggering mechanism for large lateral collapses. Recognition of this phenomenon is particularly important in recent/active island or coastal volcanoes, as it can trigger tsunamis.  相似文献   

5.
A pre-historic collapse of the northeastern flank of Jocotitlán Volcano (3950 m), located in the central part of the Trans Mexican Volcanic Belt, produced a debris-avalanche deposit characterized by surficial hummocks of exceptional size and conical shape. The avalanche covered an area of 80 km2, had an apparent coefficient of friction (H/L)_of 0.11, a maximum runout distance of 12 km, and an estimated volume of 2.8 km3. The most remarkable features of the Jocotitlán debris avalanche deposit are: the several steep (29–32°) conical proximal hummocks (up to 165 m high), large tansverse ridges (up to 205 m high and 2.7 km long) situated at the base of the volcano, and the steep 15–50 m thick terminal scarp. Proximal conical hummocks and parallel ridges that can be visually fitted back to their pre-collapse position on the mountain resulted from a sliding mode of emplacement. Steep primary slopes developed as a result of the accumulation of coarse angular clasts at the angle of repose around core clasts that are decameters in size. Distal hummocks are commonly smaller, less conical, and clustered with more diffuse outlines. Field evidence indicates that the leading distal edge of the avalanche spilled around certain topographic barriers and that the distal moving mass had a yield strength prior to stopping. In the NE sector, the avalanche was suddenly confined by topographically higher lacustrine and volcaniclastic deposits which as a result were intensely thrust-faulted, folded, and impacted by large clasts that separated from the avalanche front. Post-emplacement loading also induced normal faulting of these soft, locally water-rich sediments. The regional tectonic pattern, N-NE direction of flank failure, and the presence of a major normal fault which intersects the volcano and is parallel to the orientation of the Acambay graben located 10 km to the N suggest a genetic relationship between the extensional tectonic stress regime and triggering of catastrophic slope failure. The presence of a 3-m-thick sequence of pumice and obsidian-rich pyroclastic surge and fall tephra directly overlying the debris-avalanche deposit indicates that magma must have been present within the edifice just prior to the catastrophic flank failure. The breached crater left by the avalanche has mostly been filled by dacitic domes and lava flows. The youngest pryroclastic surge deposits on the upper flanks of the volcano have an historical C14 age of 680±80 yearsBp (Ad 1270±80). Thus Jocotitlán volcano, formerly believed to be extinct, should be considered potentially active. Because of its close proximity to Mexico-City (60 km), the most populous city in the world, reactivation could engender severe hazards.  相似文献   

6.
During late Pleistocene time, the extrusion of an andesitic dome at the summit of Tacaná volcano caused the collapse of its northwestern flank. The stratocone collapse was nearly parallel to the σ min stress direction suggesting that failure was controlled by the regional stress field. The event produced a debris avalanche that was channelized in the San Rafael River and moved 8 km downstream. The deposit covered a minimum area of 4 km2, had a volume of 0.8 ± 0.5 km3, with an H/L (vertical drop to horizontal transport distance ratio) of ~0.35, defining a degree of mobility that is atypical for volcanic debris avalanches. The flank failure undermined the summit dome leading to its collapse and the generation of a series of block-and-ash flows that were emplaced in quick succession and covered the avalanche surface. The collapse event left a 600-m-wide summit amphitheatre with a 30-degree opening to the northwest, and >200 m thick debris that blocked the San Rafael River. Remobilization of this material produced debris flows that eroded the primary deposits and cascaded into the Coatán River. After the collapse, the activity of Tacaná continued with the emission of the Agua Zarca lava flow dated at 10 ± 6 ka (40Ar/39Ar), and pyroclastic surges dated at 10,610 + 330/−315 yr BP (14C), which provide a minimum age for the collapse event. During the Holocene, Tacaná has been very active producing explosive and effusive eruptions that ended with the extrusion of two summit domes that today occupy the amphitheatre. The 1950 and 1986 phreatic outbursts occurred along the Pleistocene collapse scar. Currently ~300,000 inhabitants live within a 35 km radius of Tacaná, and could conceivably be impacted by future events of similar magnitude.  相似文献   

7.
 The depositional features of two valley-filling debris avalanche deposits were studied to reveal their transportation and depositional mechanisms. The valley-filling Iwasegawa debris avalanche deposit (ca. 0.1 km3) is distributed along the valleys at the southeastern foot of Tashirodake Volcano, northern Honshu, Japan. Debris-avalanche blocks range in size from <35 m proximally to <10 m in the distal zone and consist dominantly of fragile materials. Debris-avalanche matrix percentages increase from 35–60% in the proximal zone to 95% in the distal zone. The debris-avalanche matrix is greater in volume (80–90%) at the bottom and margins of the deposit. Normal grading of large clasts and reverse grading of wood logs and branches occur within the debris-avalanche matrix. Preferred orientation of 311 wood logs and branches within the deposit coincide with the interpreted local flow direction. The basal part of the deposit is characterized by (1) erosional features and incorporated clasts of underlying material; (2) a higher proportion (30–50%) of incorporated clasts than the upper part; and (3) reverse grading of clasts. The valley-filling Kaida debris avalanche deposit (50 000 y B.P., >0.3 km3) is distributed along the valleys at the eastern-southeastern foot of Ontake Volcano, central Japan. Debris-avalanche blocks range in size from <25 m proximally to <7 m in the medial zone. Debris-avalanche matrix percentages increase from 50–70% in the proximal zone to 80% in the distal zone. The debris-avalanche matrix is more abundant (80–90%) at the bottom part of the deposit. Deformation structures observed in the debris-avalanche blocks include elongation, folding, conjugate reverse faults, and numerous minor faults in unconsolidated materials. Lithic components within the debris-avalanche matrix tend to have a higher percentage of plucked clasts from the adjacent underlying formations. A Bingham "plug flow" model is consistent with the transportation and depositional mechanisms of the valley-filling debris avalanches. In the plug of the debris avalanche, fragile blocks were transported without major rupturing due to relatively small shear stresses in regions of small strain rate. The debris-avalanche matrix was mainly produced by shearing at the bottom and margins of the avalanche. Valley-filling debris avalanches tend to have smaller debris-avalanche blocks and larger amounts of debris-avalanche matrix than do unconfined debris avalanches. These differences may be due to disaggregation of debris-avalanche blocks by shearing against valley walls and interaction between debris-avalanche blocks and valley walls. Oriented wood logs and branches, reverse grading of clasts at the base, and a higher proportion of incorporated clasts at the base are interpreted to result from shearing along the bottom and valley walls. Received: 25 March 1998 / Accepted: 10 October 1998  相似文献   

8.
Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-I). This left a 4 km wide scar, removing 8.0 ± 0.5 km3 of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Río Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km2, and has a volume of > 11 km3. Two main DAD facies are recognized: block and mixed facies. The block facies is derived predominantly from edifice lava and forms > 80 vol.% of the DAD, with a probable volume increase of 15–25 vol.%. The mixed facies was essentially created by mixing brecciated edifice rock with substratum and is found mainly in distal and marginal areas. The DAD has clear surface ridges and hummocks, and internal structures such as jigsaw cracks, injections, and shear-zone features are widespread. Structures such as stretched blocks along the base contact indicate high basal shear. Substratum incorporation is directly observed at the base and is inferred from the presence of substratum-derived material in the DAD body. Based on the facies and structural interpretation, we propose an emplacement model of a lava-rich avalanche strongly cataclased before and/or during failure initiation. The flow mobilises and incorporates significant substrata (10–14 vol.%) while developing a fine lubricating basal layer. The substrata-dominated mixed facies is transported to the DAD interior and top in dykes invading previously-formed fractures.  相似文献   

9.
At Cotopaxi volcano, Ecuador, rhyolitic and andesitic bimodal magmatism has occurred periodically during the past 0.5 Ma. The sequential eruption of rhyolitic (70–75% SiO2) and andesitic (56–62% SiO2) magmas from the same volcanic vent over short time spans and without significant intermingling is characteristic of Cotopaxi’s Holocene behavior. This study documents the eruptive history of Cotopaxi volcano, presenting its stratigraphy and geologic field relations, along with the relevant mineralogical and chemical nature of the eruptive products, in order to determine the temporal and spatial relations of this bimodal alternation. Cotopaxi’s history begins with the Barrancas rhyolite series, dominated by pumiceous ash flows and regional ash falls between 0.4 and 0.5 Ma, which was followed by occasional andesitic activity, the most important being the ample andesitic lava flows (∼4.1 km3) that descended the N and NW sides of the edifice. Following a ∼400 ka long repose without silicic activity, Cotopaxi began a new eruptive phase about 13 ka ago that consisted of seven rhyolitic episodes belonging to the Holocene F and Colorado Canyon series; the onset of each episode occurred at intervals of 300–3,600 years and each produced ash flows and regional tephra falls with DRE volumes of 0.2–3.6 km3. Andesitic tephras and lavas are interbedded in the rhyolite sequence. The Colorado Canyon episode (4,500 years BP) also witnessed dome and sector collapses on Cotopaxi’s NE flank which, with associated ash flows, generated one of the largest cohesive debris flows on record, the Chillos Valley lahar. A thin pumice lapilli fall represents the final rhyolitic outburst which occurred at 2,100 years BP. The pumices of these Holocene rhyolitic eruptions are chemically similar to those of older rhyolites of the Barrancas series, with the exception of the initial eruptive products of the Colorado Canyon series whose chemistry is similar to that of the 211 ka ignimbrite of neighboring Chalupas volcano. Since the Colorado Canyon episode, andesitic magmatism has dominated Cotopaxi’s last 4,400 years, characterized by scoria bomb and lithic-rich pyroclastic flows, infrequent lava flows that reached the base of the cone, andesitic lapilli and ash falls that were carried chiefly to the W, and large debris flows. Andesitic magma emission rates are estimated at 1.65 km3 (DRE)/ka for the period from 4,200 to 2,100 years BP and 1.85 km3 (DRE)/ka for the past 2,100 years, resulting in the present large stratocone.  相似文献   

10.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes.  相似文献   

11.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

12.
Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars.Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30° to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180°, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano.We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180°. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast.For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano. For short-term hazard assessments, if seismicity and deformation indicate that magma is moving toward the flank of a volcano, it should be recognized that a landslide could lead to the sudden unloading of a magmatic or hydrothermal system and thereby cause a catastrophic lateral blast. A hazard assessment should assume that a lateral blast could directly affect an area at least 180° wide to a distance of 35 km from the site of the explosion, irrespective of topography.  相似文献   

13.
Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz–alunite, quartz–topaz, quartz–pyrophyllite, quartz–dickite/kaolinite, and quartz–illite (all with pyrite). Clasts of smectite–pyrite and steam-heated opal–alunite–kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite–pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite–pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures.  相似文献   

14.
Narcondam Island in the Andaman Sea represents a dacite–andesite dome volcano in the volcanic chain of the Burma–Java subduction complex. The pyroclasts of andesitic composition are restricted to the periphery of the dome predominantly in the form of block‐and‐ash deposits and minor base surge deposits. Besides pyroclastic deposits, andesitic lava occurs dominantly at the basal part of the dome whereas dacitic lava occupies the central part of the dome. The pyroclasts are represented by non‐vesiculated to poorly vesiculated blocks of andesite, lapilli, and ash. The hot debris derived from dome collapse was deposited initially as massive to reversely‐graded beds with the grain support at the lower part and matrix support at the upper part. This sequence is overlain by repetitive beds of lapilli breccia to tuff breccia. These deposits are recognized as a basal avalanche rather than lahar deposit. This basal avalanche was punctuated by an ash‐cloud surge deposit representing a sequence of thinly bedded units of normal graded unit to parallel laminated beds.  相似文献   

15.
The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.  相似文献   

16.
 Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events. Received: 18 August 1997 / Accepted: 19 December 1997  相似文献   

17.
Socompa Volcano arguably provides the world's best-exposed example of a sector collapse-derived debris avalanche deposit. New observations lead us to re-interpret the origin of the sector collapse. We show that it was triggered by failure of active thrust-anticlines in sediments and ignimbrites underlying the volcano. The thrust-anticlines were a result of gravitational spreading of substrata under the volcano load. About 80% of the resulting avalanche deposit is composed of substrata formerly residing under the volcano and in the anticlines. The collapse scar can be traced up to 5 km from the edifice, truncating two spreading-related anticlines, which collapsed in the event. Outcrops near the volcano preserve evidence of edifice material being carried along on top of mobilised substrata. On the north side of the scar, the avalanche motion was initially at right angles to the failure edge. Structural relations indicate that immediately prior to collapse the substrata disintegrated, became effectively liquidised, and were ejected from beneath the edifice. Catastrophic mobilisation of substrata probably resulted from breakdown of ignimbrite clasts and cement. It may have occurred through progressive rock fracture by high shear strain during spreading. Material ejected from under Socompa formed a layer on which volcanic edifice debris was transported. This interpretation of events explains the puzzling observation that avalanche units with the lowest gravitational potential energy moved the furthest. It can also account for avalanche motion normal to the collapse scar walls. Ignimbrites and other rock types probably capable of similar behaviour underlie many other volcanoes. Identification of spreading at other sites could therefore be a first step towards assessment of the potential for this style of catastrophic sector collapse.  相似文献   

18.
The explosive rhyolitic eruption of Öræfajökull volcano, Iceland, in AD 1362 is described and interpreted based on the sequence of pyroclastic fall and flow deposits at 10 proximal locations around the south side of the volcano. Öræfajökull is an ice-clad stratovolcano in south central Iceland which has an ice-filled caldera (4–5 km diameter) of uncertain origin. The main phase of the eruption took place over a few days in June and proceeded in three main phases that produced widely dispersed fallout deposits and a pyroclastic flow deposit. An initial phase of phreatomagmatic eruptive activity produced a volumetrically minor, coarse ash fall deposit (unit A) with a bi-lobate dispersal. This was followed by a second phreatomagmatic, possibly phreatoplinian, phase that deposited more fine ash beds (unit B), dispersed to the SSE. Phases A and B were followed by an intense, climactic Plinian phase that lasted ∼ 8–12 h and produced unit C, a coarse-lapilli, pumice-clast-dominated fall deposit in the proximal region. At the end of Plinian activity, pyroclastic flows formed a poorly-sorted deposit, unit D, presently of very limited thickness and exposed distribution. Much of Eastern Iceland is covered with a very fine distal ash layer, dispersed to the NE. This was probably deposited from an umbrella cloud and is the distal representation of the Plinian fallout. A total bulk fall deposit volume of ∼ 2.3 km3 is calculated (∼ 1.2 km3 DRE). Pyroclastic flow deposit volumes have been crudely estimated to be < 0.1 km3. Maximum clast size data interpreted by 1-D models suggests an eruption column ∼ 30 km high and mass discharge rates of ∼ 108 kg s− 1. Ash fall may have taken place from heights around 15 km, above the local tropopause (∼ 10 km), with coarser clasts dispersed below that under a different wind regime. Analyses of glass inclusions and matrix glasses suggest that the syn-eruptive SO2 release was only ∼ 1 Mt. This result is supported by published Greenland ice-core acidity peak data that also suggest very minor sulphate deposition and thus SO2 release. The small sulphur release reflects the low sulphur solubility in the 1362 rhyolitic melt. The low tropopause over Iceland and the 30-km-high eruption column certainly led to stratospheric injection of gas and ash but little sulphate aerosol was generated. Moreover, pre-eruptive and degassed halogen concentrations (Cl, F) indicate that these volatiles were not efficiently released during the eruption. Besides the local pyroclastic flow (and related lahar) hazard, the impact of the Öræfajökull 1362 eruption was perhaps restricted to widespread ash fall across Eastern Iceland and parts of northern Europe.  相似文献   

19.
A pre-historic collapse of the southeast flank of Lastarria volcano ( 5700 m) in the north Chilean Andes (25° 10 S), produced a fluidized volcanic debris avalanche whose morphology and surface structures are exceptionally well preserved. The avalanche travelled to the east-south-east, covering an area of 9.3 km2, and came to rest after climbing and over-riding a 125 m high older scoria cone. The 0.091 km3 avalanche has an apparent coefficient of friction (H/L) of 0.15 and an excessive travel distance index (Le) of 5.1 km, indicating high emplacement velocity, perhaps of the order of 80 m s–1. An important cause of the high mobility may have been the predominance of low-density, poorly cohesive scoriaceous and pumiceous layers in the source region. The flow may have had properties similar to those of a small ignimbrite.  相似文献   

20.
It is now recognised that flank collapses are a recurrent process in the evolution of the Lesser Antilles Arc volcanoes. Large magnitude debris-avalanche deposits have been identified off the coast of Dominica, Martinique and St. Lucia, with associated volumes up to 20 km3 [Deplus, C., Le Friant, A., Boudon, G., Komorowski, J.-C., Villemant, B., Harford, C., Ségoufin, J., Cheminée, J.-L., 2001. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth Planet. Sci. Lett., 192: 145–157.]. We present new radiometric dating of three major events using the K–Ar Cassignol–Gillot technique. In the Qualibou depression of St. Lucia, a collapse has been constrained by dome emplacement prior to 95 ± 2 ka. In Dominica, where repetitive flank collapse events have occurred [Le Friant, A., Boudon, G., Komorowski, J.-C., Deplus, C., 2002. L'île de la Dominique, à l'origine des avalanches de débris les plus volumineuses de l'arc des Petites Antilles. C.R. Geoscience, 334: 235–243], the Plat Pays event probably occurred after 96 ± 2 ka. Inside the depression caused by this event, Scotts Head, which is interpreted as a proximal megabloc from the subsequent Soufriere avalanche event has been dated at 14 ± 1 ka, providing an older bound for this event. On Martinique three different domes within the Carbets structure dated at 337 ± 5 ka constrain the age of this high magnitude event. Finally, these results obtained from three of the most voluminous flank collapses provide constraints to estimate the recurrence of these events, which represent one of the major hazards associated with volcanoes of the Lesser Antilles Arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号