首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a new station for full-scale measurement of wave overtopping at the Rome yacht harbour rubble mound breakwater in Ostia (Italy) and the results of the successful first measurement campaign carried out during the winter season 2003–2004. The equipment and the research activities were supported by the EU project CLASH, focusing on scale effects for wave overtopping at coastal structures. The site is characterized by a very small tidal range, a long shallow foreshore and depth-limited breaking waves which interact with a shallow sloping porous rock structure. Overtopping water is collected by a steel tank installed on the crown slab behind the parapet wall. The measurement of water level variation inside the tank by means of two pressure transducers allows the calculation of individual overtopping volumes. Incident waves, sea levels and wind are also measured. During seven independent storms, more than 400 individual overtopping events were recorded and about 86 h of valid data are available. This extensive dataset is presented, discussed and then used for comparison with two commonly used overtopping prediction formulae based on small-scale model tests showing their tendency to underestimate the prototype results. A strong correlation between the hourly mean overtopping discharge and corresponding maximum volume is also presented. The paper generally confirms the validity of the approach used in Troch et al. (2004) [Troch, P., Geeraets, J., Van de Walle, B., De Rouck, J., Van Damme, L., Allsop, W., Franco, L., 2004. Full-scale wave overtopping measurements on the Zeebrugge rubble mound breakwater. Coastal Engineering 51, 609–628] for field measurement of wave overtopping.  相似文献   

2.
3.
This paper replies to TE Baldock's discussion [Coastal Eng. 56 (2009) 380–381] of ‘Measurement of wave-by-wave bed-levels in the swash zone’ by Turner et al. [Coastal Eng. 55 (2008) 1237–1242]. We address and extend the comparison and discussion of ultrasonic bed-level sensors and buried pressure transducers to obtain estimates of the beach face elevation within the swash zone. We demonstrate the use of the former method to obtain many and continuous (every time the beach face is exposed) in-situ estimates of net sediment flux per swash.  相似文献   

4.
Different shoreline boundary conditions for numerical models of the Non-Linear Shallow Water Equations based on Godunov-type schemes are compared. The study focuses on the Peregrine and Williams [Peregrine, D.H., Williams, S.M., 2001. Swash overtopping a truncated plane beach. Journal of Fluid Mechanics 440, 391–399.] problem of a single bore collapsing on a slope. This is considered the best test to assess performances of the shoreline boundary treatments in terms of all the parameters of interest in swash zone modelling. Emphasis is given to the shoreline trajectory and flow velocity modelling. A mismatch of the velocity at the early stage of the motion is highlighted. Most of the tested techniques perform similarly in terms of maximum run-up, the backwash phase is critical in all cases. Starting from the Brocchini et al. [Brocchini, M., Bernetti, R., Mancinelli, A., Albertini, G., 2001. An efficient solver for nearshore flows based on the WAF method. Coastal Engineering 43(2), 105–129.] shoreline boundary treatment, a simple technique that improves the accuracy of velocity predictions is also developed. A sensitivity analysis of the domain resolution and the threshold value of the water depth that defines a wet cell is also presented.  相似文献   

5.
The numerical model COBRAS-UC [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] is used to carry out a two-dimensional analysis of wave induced loads on coastal structures. The model calculates pressure, forces and moments for two different cross-sections corresponding to a low-mound and a conventional rubble-mound breakwater with a crown-wall under regular and irregular incident wave conditions. Predicted results are compared with experimental information provided in Losada et al. [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] and Lara et al. [Lara, J.L., Losada, I.J., Guanche, R. (2008). “Wave interaction with low mound breakwaters using a RANS model”. Ocean engineering (35), pp 1388–1400; doi:10.1016/j.oceaneng.2008.05.006.] on a 1:20 scale. Good agreement is found, and the differences between both typologies are explained in detail. Additionally, numerical results are also compared with several semi-empirical formulae recommended for design at both the 1:20 model scale and two prototype cross-sections. Results suggest that COBRAS-UC is able to provide realistic stability information that can be used to complete the approach based on currently existing methods and tools.  相似文献   

6.
Estimating the age of particles in marine environment constitutes an invaluable tool to understand the interactions between complex flows and sediment dynamics, particularly in highly energetic coastal areas such as the Belgian Coastal Zone (Southern Bight in the North Sea). To this end, the Constituent Age and Residence time Theory – CART – introduced by Delhez, E.J.M., Campin, J.-M., Hirst, A.C., Deleersnijder, E. [1999a. Toward a general theory of the age in ocean modelling. Ocean Modelling 1, 17–27] for passive water constituents is extended to describe the sediment dynamics. It is then used in combination with a three-dimensional coupled hydrodynamic-sediment transport model to investigate sediment processes in the Belgian Coastal Zone focusing on two complementary aspects of the sediment dynamics: the internal sediment motion and redistribution within the Belgian coast; and the horizontal transport.  相似文献   

7.
Two sets of higher-order Boussinesq-type equations for water waves   总被引:1,自引:0,他引:1  
Z.B. Liu  Z.C. Sun 《Ocean Engineering》2005,32(11-12):1296-1310
Based on the classical Boussinesq model by Peregrine [Peregrine, D.H., 1967. Long waves on a beach. J. Fluid Mech. 27 (4), 815–827], two parameters are introduced to improve dispersion and linear shoaling characteristics. The higher order non-linear terms are added to the modified Boussinesq equations. The non-linearity of the Boussinesq model is analyzed. A parameter related to h/L0 is used to improve the quadratic transfer function in relatively deep water. Since the dispersion characteristic of the modified Boussinesq equations with two parameters is only equal to the second-order Padé expansion of the linear dispersion relation, further improvement is done by introducing a new velocity vector to replace the depth-averaged one in the modified Boussinesq equations. The dispersion characteristic of the further modified Boussinesq equations is accurate to the fourth-order Padé approximation of the linear dispersion relation. Compared to the modified Boussinesq equations, the accuracy of quadratic transfer functions is improved and the shoaling characteristic of the equations has higher accuracy from shallow water to deep water.  相似文献   

8.
Cross-shore hydrodynamics within an unsaturated surf zone   总被引:1,自引:0,他引:1  
This paper concerns the hydrodynamics induced by random waves incident on a steep beach. New experimental results are presented on surface elevation and kinematic probability density functions, cross-shore variation in wave heights, the fraction of broken waves and velocity moments. The surf zone is found to be unsaturated at incident wave frequencies, with a significant proportion of the incident wave energy remaining at the shoreline in the form of bores. Wave heights in both the outer and inner surf zones are best described by a full Rayleigh distribution [Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution. J. Geophys. Res. 88, 5925–5938], rather than a truncated Rayleigh distribution as used by Battjes and Janssen (1978) [Battjes, J.A, Janssen, J.P., 1978. Energy loss and setup due to breaking of random waves. Proc. 16th Int. Conf. Coastal Eng. ASCE, New York, pp. 569–588]. A new parametric wave transformation model is outlined which provides explicit expressions for the fraction of broken waves and the energy dissipation rate within the surf zone. On steep beaches, the model appears to offer improved predictive capabilities over the original Battjes and Janssen model. Cross-shore variations in the velocity variance and velocity moments are best described using Linear Gaussian wave theory, with less than 20% of the velocity variance in the inner surf zone due to low frequency energy.  相似文献   

9.
The equations of Hedges [Hedges, T.S., 2009. Discussion of “A function to determine wavelength from deep into shallow water based on the length of the cnoidal wave at breaking” by J.P. Le Roux, Coastal Eng.], although yielding similar wavelengths, are not consistent with the fact that the horizontal water particle velocity in the wave crest should equal the wave celerity at breaking over a nearly horizontal bottom.  相似文献   

10.
The Breaking Celerity Index (BCI) is proposed as a new wave breaking criterion for Boussinesq-type equations wave propagation models (BTE).The BCI effectiveness in determining the breaking initiation location has been verified against data from different experimental investigations conducted with incident regular and irregular waves propagating along uniform slope [Utku, M. (1999). “The Relative Trough Froude Number. A New Criteria for Wave Breaking”. Ph.D. Dissertation, Dept. of Civil and Enviromental Engineering, Old Dominion University, Norfolk, VA; Gonsalves Veloso dos Reis, M.T.L. (1992). “Characteristics of waves in the surf zone”. MS Thesis, Department of Civil Engineering, University of Liverpool., Liverpool; Lara, J.L., Losada, I.J., and Liu, P.L.-F. (2006). “Breaking waves over a mild gravel slope: experimental and numerical analysis”. Journal of Geophysical Research, VOL 111, C11019] and barred beaches [Tomasicchio, G.R., and Sancho, F. (2002). “On wave induced undertow at a barred beach”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 557–569]. The considered experiments were carried out in small-scale and large-scale facilities. In addition, one set of data has been obtained by the use of the COBRAS model based upon the Reynolds Averaged Navier Stokes (RANS) equations [Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., and Sakakiyama, T. (2000). “A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions”. Proceedings of Coastal Structures ‘99, Balkema, Rotterdam, 169–174; Losada, I.J., Lara, J.L., and Liu, P.L.-F. (2005). “Numerical simulation based on a RANS model of wave groups on an impermeable slope”. Proceedings of Fifth International Symposium WAVES 2005, Madrid].Numerical simulations have been performed with the 1D-FUNWAVE model [Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998). “FUNWAVE 1.0 Fully Nonlinear Boussinesq Wave Model Documentation and User's Manual”. Research Report No CACR-98-06, Center for Applied Coastal Research, University of Delaware, Newark]. With regard to the adopted experimental conditions, the breaking location has been calculated for different trigger mechanisms [Zelt, J.A. (1991). “The run-up of nonbreaking and breaking solitary waves”. Coastal Engineering, 15, 205–246; Kennedy, A.B., Chen, Q., Kirby, J.T., and Dalrymple, R.A. (2000). “Boussinesq modeling of wave transformation, breaking and run-up. I: 1D”. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39–47; Utku, M., and Basco, D.R. (2002). “A new criteria for wave breaking based on the Relative Trough Froude Number”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 258–268] including the proposed BCI.The calculations have shown that BCI gives a better agreement with the physical data with respect to the other trigger criteria, both for spilling and plunging breaking events, with a not negligible reduction of the calculation time.  相似文献   

11.
Packwood, A.R., 1983. The influence of beach porosity on wave uprush and backwash. Coastal Eng., 7: 29–40.A numerical model is described to calculate the influence of a porous bed on the run-up of a bore on a gently sloping sandy beach. It is shown that fine-medium grade sands have very little effect in the run-up phase. Significant differences between impermeable and porous bed solutions are found in the backwash which might explain certain sand erosion and deposition phenomena.  相似文献   

12.
13.
A diagnostic of coastal erosion and shoreline retreat occurring at a 7-km long sandy beach (Littoral Cell III) located in Todos Santos Bay (Baja California, Mexico) is performed trough the analysis of aerial photographs. Around 82,000 m2 of this sandy beach have been lost in a 20 year period (1985–2005), at a beach loss rate of 2,100 m2 per year. This indicates that coastal erosion is becoming a hazard to human lives and coastal infrastructure. Due to the latter, the implementation of a Shoreline Erosion Management Plan (SEMP) is proposed as the best management approach to deal with the problem. The Littoral Cell III SEMP considers four core policies, eight management strategies and a group of specific measures.  相似文献   

14.
Scour below marine pipelines in shoaling conditions for random waves   总被引:1,自引:0,他引:1  
This paper provides an approach by which the scour depth below pipelines in shoaling conditions beneath non-breaking and breaking random waves can be derived. Here the scour depth formula in shoaling conditions for regular non-breaking and breaking waves with normal incidence to the pipeline presented by Cevik and Yüksel [Cevik, E. and Yüksel, Y., (1999). Scour under submarine pipelines in waves in shoaling conditions. ASCE J. Waterw., Port, Coast. Ocean Eng., 125 (1), 9–19.] combined with the wave height distribution including shoaling and breaking waves presented by Mendez et al. [Mendez, F.J., Losada, I.J. and Medina, R., (2004). Transformation model of wave height distribution on planar beaches. Coast. Eng. 50 (3), 97–115.] are used. Moreover, the approach is based on describing the wave motion as a stationary Gaussian narrow-band random process. An example of calculation is also presented.  相似文献   

15.
This is a reply to the discussion by Camenen and Larson (Coastal Eng., 58, 2011, 131–134) of “Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations” by D.A. van der A et al. (Coastal Eng. 57, 2010, 331–342). The authors of the original paper (Van der A et al., 2010) thank the discussers for their interest in and comments on the work presented in the paper.  相似文献   

16.
In the response given by Le Roux [Le Roux, J.P., 2008. A simple method to determine breaker height and depth for different deepwater wave height/length ratios and sea floor slopes — Reply to discussion by M.C. Haller and P.C. Catalan, Coast. Eng. 55, 185–188] to the discussion of Haller and Catalán [Haller, M.C., Catalan, P.A., 2008. Discussion of “A simple method to determine breaker height and depth for different deepwater wave height/length ratios and sea floor slopes”, by J.P. Le Roux [Coastal Engineering 54 (2007) 271–277], Coast. Eng. 55, 181–184], the author presents a defense of the large number of inconsistencies/errors that we pointed out in regards to the earlier work of Le Roux [Le, Roux, J.P., 2007. A simple method to determine breaker height and depth for different wave height/length ratios and sea floor slopes, Coast. Eng. 54, 271–277]. We appreciate the response for the fact that it further clarifies the lines of reasoning used in the previous work. Unfortunately, we are not convinced by the defenses offered and still posit that the original work contains many inconsistencies and downright calculation errors. We try to avoid repetition herein, and instead of rehashing all of the points made in our previous discussion, we will concentrate on a few fundamental problems that undermine the whole premise of the original paper. We feel it is important to make these clear to the readers of Coastal Engineering.  相似文献   

17.
Sediment stability in the shallow Venice Lagoon was investigated by means of numerical modelling. Results from a hydrodynamic model allowed for the determination of the wave climate and bottom effective parameters so that simulations with a Lagrangian model for suspended particulate matter could be performed. A spring–neap cycle in summer 1998 was chosen as integration period since data for calibration and verification were collected within the European project F-ECTS between summer 1998 and spring 1999. Deposition on shallow mud flats as well as short term erosion during a strong wind event were reproduced and mass balances for two areas computed. A relation of patterns of SPM in the water and in the sediment was found and can be ascribed to the displacement of material during storm events from shallow areas to the bottom of very small channels. Assuming about 10 to 14 storm events during the year comparable to the Bora event during the integration time, estimates for long-term trends of sediment loss on shallow flats by Day et al. [Day, J.W., Rybczyk, J., Scarton, F., Rismondo, A., Are, D., Cecconi, G., 1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: a field and modelling approach. Estuarine, Coastal and Shelf Science 49, 607–628] are met by the simulation results. Evidently, long-term sediment evolution of the lagoon is therefore not dominated by the average (residual) processes that occur in the lagoon, but by the few peak events that happen randomly over the year.  相似文献   

18.
D.-S. Hur  K.-H. Lee  G.-S. Yeom   《Ocean Engineering》2008,35(17-18):1826-1841
In designing the coastal structures, the accurate estimation of the wave forces on them is of great importance. In this paper, the influences of the phase difference on wave pressure acting on a composite breakwater installed in the three-dimensional (3-D) wave field are studied numerically. We extend the earlier model [Hur, D.S., Mizutani, N., 2003. Coastal Engineering 47, 329–345] to simulate 3-D wave fields by introducing 3-D Navier–Stokes solver with the Smagorinsky's sub-grid scale (SGS) model. For the validation of the model, the wave field around a 3-D asymmetrical structure installed on a submerged breakwater, in which the complex wave deformations generate, is simulated, and the numerical solutions are compared to the experimental data reported by Hur, Mizutani, Kim [2004. Coastal Engineering (51, 407–420)]. The model is then adopted to investigate 3-D characteristics of wave pressure and force on a caisson of composite breakwater, and the numerical solutions were discussed with respect to the phase difference between harbor and seaward sides induced by the transmitted wave through the rubble mound or the diffraction. The numerical results reveal that wave forces acting on the composite breakwater are significantly different at each cross-section under influence of wave diffraction that is important parameter on 3-D wave interaction with coastal structures.  相似文献   

19.
The quantity of coastline retreat resulting from storm erosion is one of the most important phenomena that needs to be accurately quantified to facilitate effective coastal management strategies. Historically, the volume of storm erosion (and coastline retreat) accommodated for coastal planning decisions has been directly linked to the storm (usually defined by considering wave height and duration only) with a certain pre-defined return period, known as a Synthetic Design Storm (SDS) (e.g. 1 in 100 year storm). The SDS method of estimating storm erosion volumes for coastal planning thus assumes that, for example, the 1 in 100 year storm event also results in a 1 in 100 year erosion event. This communication discusses the physical reality of this assumption and demonstrates the improved performance of a new method, based on Joint Probability Distributions (JPD) for estimating storm erosion volumes proposed by Callaghan et al. [Callaghan, D.P., Nielsen, P., Short, A.D. and Ranasinghe, R., 2008. Statistical simulation of wave climate and extreme beach erosion. Coastal Engineering, 55(5): 375–390] using one of the world's longest beach profile surveys from Sydney, Australia.  相似文献   

20.
A series of hydraulic model tests has been carried out in a glass wave flume to investigate the influences of wave height, wave period, wave steepness, surf similarity parameter, roughness, layer thickness and porosity on wave run-up and overtopping of 1:2 sloped impermeable and permeable breakwaters fronted by a 1:10 gentle, smooth beach slope. The analysis of results involves the correlation between the overtopping energy transfer with the relative wall height and the relationship between wave run-up and overtopping rate. Further, measured wave run-up and overtopping rates are compared with the results given in the Shore Protection Manual (1984), Automated Coastal Engineering System (1992)and results of other investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号