首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

2.
A run-up of irregular long sea waves on a beach with a constant slope is studied within the framework of the nonlinear shallow-water theory. This problem was solved earlier for deterministic waves, both periodic and pulse ones, using the approach based on the Legendre transform. Within this approach, it is possible to get an exact solution for the displacement of a moving shoreline in the case of irregular-wave run-up as well. It is used to determine statistical moments of run-up characteristics. It is shown that nonlinearity in a run-up wave does not affect the velocity moments of the shoreline motion but influences the moments of mobile shoreline displacement. In particular, the randomness of a wave field yields an increase in the average water level on the shore and decrease in standard deviation. The asymmetry calculated through the third moment is positive and increases with the amplitude growth. The kurtosis calculated through the fourth moment turns out to be positive at small amplitudes and negative at large ones. All this points to the advantage of the wave run-up on the shore as compared to a backwash at least for small-amplitude waves, even if an incident wave is a Gaussian stationary process with a zero mean. The probability of wave breaking during run-up and the applicability limits for the derived equations are discussed.  相似文献   

3.
Different shoreline boundary conditions for numerical models of the Non-Linear Shallow Water Equations based on Godunov-type schemes are compared. The study focuses on the Peregrine and Williams [Peregrine, D.H., Williams, S.M., 2001. Swash overtopping a truncated plane beach. Journal of Fluid Mechanics 440, 391–399.] problem of a single bore collapsing on a slope. This is considered the best test to assess performances of the shoreline boundary treatments in terms of all the parameters of interest in swash zone modelling. Emphasis is given to the shoreline trajectory and flow velocity modelling. A mismatch of the velocity at the early stage of the motion is highlighted. Most of the tested techniques perform similarly in terms of maximum run-up, the backwash phase is critical in all cases. Starting from the Brocchini et al. [Brocchini, M., Bernetti, R., Mancinelli, A., Albertini, G., 2001. An efficient solver for nearshore flows based on the WAF method. Coastal Engineering 43(2), 105–129.] shoreline boundary treatment, a simple technique that improves the accuracy of velocity predictions is also developed. A sensitivity analysis of the domain resolution and the threshold value of the water depth that defines a wet cell is also presented.  相似文献   

4.
《Coastal Engineering》2006,53(4):335-347
This paper investigates cross-shore profile changes of gravel beaches, with particular regard to discussing the tendency for onshore transport and profile steepening in the swash zone. The discussion includes observed morphological changes on a gravel beach from experimental investigations at the Large Wave Flume (GWK) in Hanover, Germany. During the tests all the profile changes occurred in the swash zone, resulting in erosion below the still water line (SWL) and formation of a berm above the SWL. We investigate the profile evolution evaluating the transport rates from a bed load sediment transport formulation coupled with velocities calculated from a set of Boussinesq equations that have been validated for its use in the surf and swash zones [Lynett, P.J., Wu, T.-R., and Liu, L.-F., P., 2002. Modelling wave runup with depth-integrated equations. Coastal Engineering, 46, 89–107; Otta, A.K., and Pedrozo-Acuña, A., 2004. Swash boundary and cross-shore variation of horizontal velocity on a slope. In: J.M. Smith (Editor), Proceedings 29th International Conference on Coastal Engineering. World Scientific, Lisbon, Portugal, pp. 1616–1628]. We discuss the influence of bottom friction on the predicted profiles, using reported friction factors from experimental studies. It is shown that the use of a different friction factor within a realistic range in each phase of the swash (uprush and backwash) improves prediction of the beach profiles, although quantitative agreement between the measured and computed profile evolutions is not satisfactory. Furthermore, if the friction factor and the transport efficiency (C) of the sediment transport formulation are kept the same in the uprush and backwash, accurate representation of profile evolution is not possible. Indeed, the features of the predicted profiles are reversed. However, when the C parameter is set larger during the uprush than during the backwash, the predicted profiles are closer to the observations. Differences between the predicted profiles from setting non-identical C-values and friction factors for the swash phase, are believed to be linked to both the infiltration effects on the flow above the beachface and the more accelerated flow in the uprush.  相似文献   

5.
The flow structure of a swash event over a uniform slope is studied using a RANS-VOF numerical model coupled with a v2f turbulence closure. The model is compared with experimental data of recent laboratory experiments. The ability of the turbulence modelling for simulating swash flow and the evolution of the computed bed shear stress during run-up and run-down are investigated. The agreement between numerical results and measured data, such as water depth, depth-averaged velocity and bed shear stress is very good during run-up. Main discrepancies are found during run-down. The paper also examines the aeration of the water layer in the swash flow, taking advantage of the PLIC method for computing the air–water interfaces. Air is continuously entrapped in the swash front and released at its rear during run-up. A detailed analysis indicates that the flow reversal is initiated near the bottom at the outer boundary of the swash zone and progresses landward. The study highlights the asymmetry between run-up and run-down. During run-up, the swash front propagation determines the turbulence properties and the bed shear stress profile on the beach, whereas the flow properties are more homogeneously distributed in the swash area during run-down.  相似文献   

6.
The problem of sea-wave run-up on a beach is discussed within the framework of exact solutions of a nonlinear theory of shallow water. Previously, the run-up of solitary waves with different forms (Gaussian and Lorentzian pulses, a soliton, special-form pulses) has already been considered in the literature within the framework of the same theory. Depending on the form of the incident wave, different formulas were obtained for the height of wave run-up on a beach. A new point of this study is the proof of the universality of the formula for the maximum height of run-up of a solitary wave on a beach for the corresponding physical choice of the determining parameters of the incident wave, so that the effect of difference in form is eliminated. As a result, an analytical formula suitable for applications, in particular, in problems related to tsunamis, has been proposed for the height of run-up of a solitary wave on a beach.  相似文献   

7.
The influence of the incident wave form on the extreme (maximal) characteristics of a wave at a beach (run-up and draw-down heights, run-up and draw-down velocities, and the breaking parameter) is studied. It is suggested to use in the calculations the definition of wavelength at a level of 2/3 of the maximal height, which to a certain degree correlates with the definition of the significant wavelength accepted in oceanology. Such a definition allows us to unify the relations for extreme run-up characteristics so that the influence of the incident wave form becomes insignificant. The obtained universal relations can be used for the estimates of run-up characteristics when the exact information about the form of the incident wave is not available.  相似文献   

8.
《Coastal Engineering》2001,42(1):35-52
Measurements were obtained from the swash-zone of a high-energy macrotidal dissipative beach of pore-pressure at four levels below the bed, and cross-shore velocity at a single height above the bed. Time-series from relatively high (Hs≈2.0 m) energy conditions were chosen for analysis from the mid-swash-zone at high tide. Calculation of upwards-directed pore-pressure gradients shows that, in this case, fluidisation of the upper layer of sediment, leading to enhanced backwash transport, is unlikely. An apparent conflict exists in the literature regarding the net effect of infiltration–exfiltration on the sediment transport, through the combined effects of stabilisation–destabilisation and boundary layer modification. This is examined for the data collected using a modified Shields parameter. Inferred instantaneous transport rates integrated over a single swash cycle show a decrease in uprush transport of 10.5% and an increase in backwash transport of 4.5%. Sensitivity tests suggest that there is a critical grain size at which the influence of infiltration–exfiltration changes from offshore to onshore. The exact value of this grain size is highly sensitive to the method used to estimate the friction factor.  相似文献   

9.
The influence of the seaward boundary condition on the internal swash hydrodynamics is investigated. New numerical solutions of the characteristics form of the nonlinear shallow-water equations are presented and applied to describe the swash hydrodynamics forced by breaking wave run-up on a plane beach. The solutions depend on the specification of characteristic variables on the seaward boundary of the swash zone, equivalent to prescribing the flow depth or the flow velocity. It is shown that the analytical solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. J. Fluid Mech. 16, 113–125] is a special case of the many possible solutions that can describe the swash flow, but one that does not appear appropriate for practical application for real waves. The physical significance of the boundary conditions is shown by writing the volume and momentum fluxes in terms of the characteristic variables. Results are presented that illustrate the dependence of internal flow depth and velocity on the boundary condition. This implies that the internal swash hydrodynamics depend on the shape and wavelength of the incident bore, which differs from the hydrodynamic similarity inherent in the analytical solution. A solution appropriate for long bores is compared to laboratory data to illustrate the difference from the analytical solution. The results are important in terms of determining overwash flows, flow forces and sediment dynamics in the run-up zone.  相似文献   

10.
Measuring run-up on a natural beach   总被引:1,自引:0,他引:1  
Field experiments have been performed to evaluate and intercompare two techniques for measuring run-up on natural beaches, resistance wires and films. Simultaneous deployment of wire sensors shows a low error (< 5%) in electronics gain, but a strong sensitivity to the elevation of the wires above the beach face. On a low slope (β ~ 0.02) beach, with incident wind waves of moderate height (H ~ 1 m), differences of only a few cm in the wire elevation cause variance differences as large as 25%, in otherwise identical sensors. Replicate digitizations of the same run-up film show variance differences as large as 20%, with an average deviation from the mean variance of 8%.Use of the film and resistance wire sensors on the same run-up field showed small differences in the mean swash elevation (i.e., set-up), but an 83% difference in swash variance. Much further work is needed to determine the dependence of sensor differences on beach slope, porosity, camera elevation and other factors.  相似文献   

11.
A new model for the boundary layer development and associated skin friction coefficients and shear stress within the swash zone is presented. The model is developed within a Lagrangian reference frame, following fluid trajectories, and can be applied to both laminar flow and smooth turbulent flow. The model is based on the momentum integral approach for steady, flat-plate boundary layers, with appropriate modifications to account for the unsteady flow regime and flow history. The model results are consistent with previous measurements of bed shear stress and skin friction coefficients within the swash zone. These indicate strong temporal and spatial variation throughout the swash cycle, and a clear distinction between the uprush and backwash phase. This variation has been previously attributed the unsteady flow regime and flow history effects, both of which are accounted for in the new model. Fluid particle trajectories and velocity are computed using the non-linear shallow water wave equations and the boundary layer growth across the entire swash zone is estimated. Predictions of the bed shear stress and skin friction coefficients agree reasonably well with direct bed shear stress measurements reported by Barnes et al. (Barnes, M.P., O’Donaghue, T., Alsina, J.M., Baldock, T.E., 2009. Direct bed shear stress measurements in bore-driven swash. Coastal Engineering 56 (8), 853–867) and, for a given flow velocity, give stresses which are consistent with the bias toward uprush sediment transport which has consistently been observed in measurements. The data and modelling suggest that the backwash boundary layer is initially laminar, which results in the late development of significant bed shear during the backwash, with a transition to a turbulent boundary layer later in the backwash. A new conceptual model for the boundary layer structure at the leading edge of the swash is proposed, which accounts for both the no-slip condition at the bed and the moving wet–dry interface. However, further development of the Lagrangian Boundary Layer Model is required in order to include bore-generated turbulence and to account for variable roughness and mobile beds.  相似文献   

12.
Tsunamis can leave deposits on the land surface they inundate. The characteristics of tsunami deposits can be used to calculate tsunami run-up height and velocity. This paper presents a reconstruction of tsunami run-up from tsunami deposit characteristics in a simple mathematical model. The model is modified and applied to reconstruct tsunami run-ups at Ao Kheuy beach and Khuk Khak beach, Phangnga province, Thailand. The input parameters are grain-size and maximum run-up distance of the sediment. The reconstructed run-up heights are 4.16–4.91 m at Ao Kheuy beach and 5.43–9.46 m at Khuk Khak beach. The estimated run-up velocities (maximum velocity) at the still water level are 12.78–19.21 m/s. In the area located 70–140 m inland to the end of run-up inundation, estimated mean run-up velocities decrease from approximately 1.93 m/s to 0 m/s. Reasonably good agreements are found between reconstructed and observed run-up heights. The tsunami run-up height and velocity can be used for risk assessment and coastal development programs in the tsunami affected area. The results show that the area from 0 to 140 m inland was flooded by high velocity run-ups and those run-up energies were dissipated mainly in this area. The area should be designated as either an area where settlement is not permitted or an area where effective protection is provided, for example with flood barriers or forest.  相似文献   

13.
植被斜坡岸滩海啸波消减数值模拟研究   总被引:1,自引:0,他引:1  
An explicit one-dimensional model based on the shallow water equations(SWEs) was established in this work to simulate tsunami wave propagation on a vegetated beach. This model adopted the finite-volume method(FVM)for maintaining the mass balance of these equations. The resistance force caused by vegetation was taken into account as a source term in the momentum equation. The Harten–Lax–van Leer(HLL) approximate Riemann solver was applied to evaluate the interface fluxes for tracing the wet/dry transition boundary. This proposed model was used to simulate solitary wave run-up and long-periodic wave propagation on a sloping beach. The calibration process suitably compared the calculated results with the measured data. The tsunami waves were also simulated to discuss the water depth, tsunami force, as well as the current speed in absence of and in presence of forest domain. The results indicated that forest growth at the beach reduced wave energy loss caused by tsunamis. A series of sensitivity analyses were conducted with respect to variable parameters(such as vegetation densities, wave heights, wave periods, bed resistance, and beach slopes) to identify important influences on mitigating tsunami damage on coastal forest beach.  相似文献   

14.
本文采用圆柱体阵列来模拟珊瑚礁面的大糙率,通过波浪水槽实验研究礁面糙率对孤立波传播变形及岸滩爬高的影响。结果表明,粗糙礁面的存在显著削弱了礁坪上孤立波的首峰和礁后岸滩反射造成的次峰,同时降低了波浪在珊瑚礁面的传播速度;垂直于岸线方向沿礁相对波高随着入射波增大而减小,随着礁坪水深的增大而增大,粗糙礁面上波高沿礁的衰减更为显著;礁前斜坡的无量纲反射波高随无量纲入射波高的变化与礁坪水深有关,当入射波高足够大时其趋于常值,粗糙礁面略微增大了礁前斜坡的反射;无量纲透射波高和岸滩爬高随着无量纲入射波高的增大而减小,特别是礁坪水深较大时更为显著,粗糙礁面时的无量纲岸滩爬高相对于光滑礁面平均减小46%;通过回归分析得出了同时适合于光滑和粗糙礁面的预测孤立波岸滩爬高的经验关系式。  相似文献   

15.
We study the run-up of long solitary waves of different polarities on a beach in the case of composite bottom topography: a plane sloping beach transforms into a region of constant depth. We confirm that nonlinear wave deformation of positive polarity (wave crest) resulting in an increase in the wave steepness leads to a significant increase in the run-up height. It is shown that nonlinear effects are most strongly pronounced for the run-up of a wave with negative polarity (wave trough). In the latter case, the run-up height of such waves increases with their steepness and can exceed the amplitude of the incident wave.  相似文献   

16.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

17.
Liu  Wei-jie  Shao  Ke-qi  Ning  Yue  Zhao  Xi-zeng 《中国海洋工程》2020,34(2):162-171
Wave hydrodynamics over fringing reefs is largely controlled by the reef surface roughness and hydrodynamic forcing. It is believed that climate change will result in a net increase in the water depth over the reef flat, a degrading of the surface roughness of coral reefs and changes in extreme incident wave heights. For an accurate assessment of how climate change affects the safety of reef-fringed coasts, a numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts was carried out based on a Boussinesq wave model,FUNWAVE-TVD. Validated with experimental data, the present model shows reasonable prediction of irregular wave evolution and run-up height over fringing reefs. Numerical experiments were then implemented based on the anticipated effects of climate change and carried out to investigate the effects of sea level rise, degrading of the reef surface roughness and increase of extreme incident wave height on the irregular wave run-up height over the backreef beach respectively. Variations of run-up components(i.e., spectral characteristics of run-up and mean water level) were examined specifically and discussed to better understand the influencing mechanism of each climate change-related effect on the run-up.  相似文献   

18.
Abstract

On shingle beaches, changes in foreshore elevation and sediment distribution landward of the break point are produced largely by variations in the uprush and backwash of waves. However, very little is known about the forces active in this zone.

A field instrument system which senses and records some of the parameters thought to influence beach erosion and deposition in this zone has been constructed. The equipment is also suitable for the investigation of a number of other shore and nearshore processes including erosion on sandy and rocky shores, and flow processes affecting littoral biological communities.

In the swash zone two sensing heads, a dynamometer and a depth recorder, sense variations in uprush and backwash velocities, energies, discharges, and depths of flow. Both devices are electromechanical and are coupled to a recording unit on land by PVC‐insulated cable. The dynamometer (two force plates mounted back‐to‐back on a compression spring and coupled to variable resistances) has been calibrated, statically and in a flume, to obtain velocity determinations accurate to within 10 cm . sec?1 of true flow speed. Average swash zone velocities lie between 100 and 300 cm . sec?1.

A parallel‐wire resistance gauge mounted an a stilling tube records flow depths. As water level rises and falls in the tube it alters resistance in a control circuit. The land unit, amplifiers and a strip‐chart recorder, receives the output from the dynamometer and flow depth gauge. The recorder is equipped with a trip‐pen so that analysis of wave periods or other variables is possible in the field. With poles at known spacings across the shore and the trip‐pen records, velocity distributions across the swash zone can be obtained. Measurements of velocity made near the bed with the dynamometer can then be related to the local surface velocity profile.

Problems with the instrument system include inability to record velocities at several points simultaneously, and unreliable records of backwash parameters with low breakers on shingle beaches because of the small volume of flow and rapid percolation of water into the beach face.  相似文献   

19.
A simple sand trap is used to measure swash and backwash bedload transport rates on intertidal profiles. Data from sixty-eight beach experiments are used to calculate a mean value of 12.78 kg m?4s?2 for the calibration coefficient in the Bagnold beach equation.  相似文献   

20.
The rate of wave overtopping of a barrier beach is measured and modeled. Unique rate of wave overtopping field data are obtained from the measure of the Carmel River, California, lagoon filling during a time when the lagoon is closed-off with no river inflow. Volume changes are based on measured lagoon height changes applied to a measured hypsometric curve. Wave heights and periods are obtained from directional wave spectra data in 15 m fronting the beach. Beach morphology was measured by GPS walking surveys. Three empirical overtopping models by Van der Meer and Janssen (1995), Hedges and Reis (1998) and Pullen et al. (2007) with differing parameterizations on wave height, period and beach slope and calibrated using extensive laboratory data obtained over plane, impermeable beaches are applied in a quasi-2D manner and compared with the field observations. Three overtopping events are considered when morphology data were available less than 2 weeks prior to the event. The models are tuned to fit the data using a reduction factor to account for beach permeability, berm characteristics, non-normal wave incidence and surface roughness influence. In addition, the run-up model by Stockdon et al. (2006) based on field data is examined and found to underestimate run-up as the calculated values were too small to predict any of the observed overtopping. The three overtopping models performed similarly well with values of 0.72–0.87 for the two narrow-banded wave cases, with an average reduction factor of 0.78. The European model (Pullen et. al., 2007) performed best overall and in particular for the case of the broad-banded, double peaked wave spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号