首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

2.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

3.
《Coastal Engineering》2001,43(1):25-40
Video-based swash motions from three studies (on two separate beaches) were analyzed with respect to theoretical swash trajectories assuming plane beach ballistic motions under quadratic friction. Friction coefficient values for both the uprush and backwash were estimated by comparing measured swash space–time trajectories to these theoretical expectations given an initial velocity and beach slope. Observations were made spanning high tides, and in one case, during a light rain. Analysis of over 4500 individual swash events showed that the uprush friction coefficient was nearly constant during all three studies with a mean value of roughly 0.007 and showed no trends over a tidal cycle. In contrast, backwash friction coefficient values varied over the tidal cycles ranging between 0.01 and 0.07 with minimum values corresponding to the highest tides. Although these values are close to the theoretical estimates based on a Law of the Wall formulation and values commonly referenced in the literature, these observations show a consistent tendency for backwash friction estimates to greatly exceed uprush friction estimates. The disparity between uprush and backwash friction coefficients can be partially attributed to the exclusion of a pressure gradient term in the ballistic model. However, results indicate that backwash friction coefficients adjusted to account for this effect may be three times larger than the uprush friction values during lower tides. This tidal dependence for backwash friction coefficients is attributed to a complex interaction between swash infiltration and entrained sediment loads. These findings imply that friction estimates (necessary for sediment transport calculations and hydrodynamic predictions) based solely on grain roughness may not be correct for backwash flows.  相似文献   

4.
Direct bed shear stress measurements in bore-driven swash   总被引:1,自引:0,他引:1  
Direct measurements of bed shear in the swash zone are presented. The data were obtained using a shear plate in medium and large-scale laboratory bore-driven swash and cover a wide range of bed roughness. Data were obtained across the full width of the swash zone and are contrasted with data from the inner surf zone. Estimates of the flow velocities through the full swash cycle were obtained through numerical modelling and calibrated against measured velocity data. The measured stresses and calculated flow velocities were subsequently used to back-calculate instantaneous local skin friction coefficients using the quadratic drag law. The data show rapid temporal variation of the bed shear stress through the leading edge of the uprush, which is typically two–four times greater than the backwash shear stresses at corresponding flow velocity. The measurements indicate strong temporal variation in the skin friction coefficient, particularly in the backwash. The general behaviour of the skin friction coefficient with Reynolds number is consistent with classical theory for certain stages of the swash cycle. A spatial variation in skin friction coefficient is also identified, which is greatest across the surf-swash boundary and likely related to variations in local turbulent intensities. Skin friction coefficients during the uprush are approximately twice those in the backwash at corresponding Reynolds number and cross-shore location. It is suggested that this is a result of the no-slip condition at the tip leading to a continually developing leading edge and boundary layer, into which high velocity fluid and momentum are constantly injected from the flow behind and above the tip region. Finally, the measured stress data are used to determine the asymmetry and cross-shore variation in potential sediment transport predicted by three forms of sediment transport formulae.  相似文献   

5.
A new model for the boundary layer development and associated skin friction coefficients and shear stress within the swash zone is presented. The model is developed within a Lagrangian reference frame, following fluid trajectories, and can be applied to both laminar flow and smooth turbulent flow. The model is based on the momentum integral approach for steady, flat-plate boundary layers, with appropriate modifications to account for the unsteady flow regime and flow history. The model results are consistent with previous measurements of bed shear stress and skin friction coefficients within the swash zone. These indicate strong temporal and spatial variation throughout the swash cycle, and a clear distinction between the uprush and backwash phase. This variation has been previously attributed the unsteady flow regime and flow history effects, both of which are accounted for in the new model. Fluid particle trajectories and velocity are computed using the non-linear shallow water wave equations and the boundary layer growth across the entire swash zone is estimated. Predictions of the bed shear stress and skin friction coefficients agree reasonably well with direct bed shear stress measurements reported by Barnes et al. (Barnes, M.P., O’Donaghue, T., Alsina, J.M., Baldock, T.E., 2009. Direct bed shear stress measurements in bore-driven swash. Coastal Engineering 56 (8), 853–867) and, for a given flow velocity, give stresses which are consistent with the bias toward uprush sediment transport which has consistently been observed in measurements. The data and modelling suggest that the backwash boundary layer is initially laminar, which results in the late development of significant bed shear during the backwash, with a transition to a turbulent boundary layer later in the backwash. A new conceptual model for the boundary layer structure at the leading edge of the swash is proposed, which accounts for both the no-slip condition at the bed and the moving wet–dry interface. However, further development of the Lagrangian Boundary Layer Model is required in order to include bore-generated turbulence and to account for variable roughness and mobile beds.  相似文献   

6.
《Coastal Engineering》2001,42(1):35-52
Measurements were obtained from the swash-zone of a high-energy macrotidal dissipative beach of pore-pressure at four levels below the bed, and cross-shore velocity at a single height above the bed. Time-series from relatively high (Hs≈2.0 m) energy conditions were chosen for analysis from the mid-swash-zone at high tide. Calculation of upwards-directed pore-pressure gradients shows that, in this case, fluidisation of the upper layer of sediment, leading to enhanced backwash transport, is unlikely. An apparent conflict exists in the literature regarding the net effect of infiltration–exfiltration on the sediment transport, through the combined effects of stabilisation–destabilisation and boundary layer modification. This is examined for the data collected using a modified Shields parameter. Inferred instantaneous transport rates integrated over a single swash cycle show a decrease in uprush transport of 10.5% and an increase in backwash transport of 4.5%. Sensitivity tests suggest that there is a critical grain size at which the influence of infiltration–exfiltration changes from offshore to onshore. The exact value of this grain size is highly sensitive to the method used to estimate the friction factor.  相似文献   

7.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   

8.
《Coastal Engineering》2005,52(1):1-23
We develop solutions for the transport of suspended sediment by a single swash event following the collapse of a bore on a plane beach, and we investigate the morphodynamical role that such transport may play. Although the intrinsic asymmetry between uprush and backwash velocities tends to encourage the export of sediment, we find that swash events may be effective in distributing across the swash zone much or all of the sediment mobilised by bore collapse; additionally, settling lag effects may promote a weak onshore movement of sediment. We quantify both effects in terms of the properties of the sediment and of the swash event, and comment on the relationship between our findings and recent field studies of swash zone sediment transport.  相似文献   

9.
《Coastal Engineering》2005,52(7):633-645
New experimental laboratory data are presented on swash overtopping and sediment overwash on a truncated beach, approximating the conditions at the crest of a beach berm or inter-tidal ridge-runnel. The experiments provide a measure of the uprush sediment transport rate in the swash zone that is unaffected by the difficulties inherent in deploying instrumentation or sediment trapping techniques at laboratory scale. Overtopping flow volumes are compared with an analytical solution for swash flows as well as a simple numerical model, both of which are restricted to individual swash events. The analytical solution underestimates the overtopping volume by an order of magnitude while the model provides good overall agreement with the data and the reason for this difference is discussed. Modelled flow velocities are input to simple sediment transport formulae appropriate to the swash zone in order to predict the overwash sediment transport rates. Calculations performed with traditional expressions for the wave friction factor tend to underestimate the measured transport. Additional sediment transport calculations using standard total load equations are used to derive an optimum constant wave friction factor of fw = 0.024. This is in good agreement with a broad range of published field and laboratory data. However, the influence of long waves and irregular wave run-up on the overtopping and overwash remains to be assessed. The good agreement between modelled and measured sediment transport rates suggests that the model provides accurate predictions of the uprush sediment transport rates in the swash zone, which has application in predicting the growth and height of beach berms.  相似文献   

10.
通过波浪水槽实验,对海平面变化造成的波浪动力因素改变引起的沙质岸滩形态响应开展机理性研究。实验采用1∶10单一沙质斜坡概化岸滩,利用3种不同实验水深模拟海平面变化,考虑椭圆余弦波、非规则波、规则波和孤立波4种类型波浪作用。实验对波浪在斜坡上的传播变形、破碎、上爬和回落过程的波高及波浪作用后的岸滩地形进行了测量。实验结果表明,椭圆余弦波、规则波和非规则波作用下,平衡岸滩呈现出滩肩形态,孤立波作用下则呈沙坝形态。海平面上升造成波浪动力增强,沙质岸滩平衡剖面形状基本保持不变向岸平移,槽谷、滩肩、沙坝位置以及岸线蚀退距离,均呈现出良好规律性。  相似文献   

11.
Packwood, A.R., 1983. The influence of beach porosity on wave uprush and backwash. Coastal Eng., 7: 29–40.A numerical model is described to calculate the influence of a porous bed on the run-up of a bore on a gently sloping sandy beach. It is shown that fine-medium grade sands have very little effect in the run-up phase. Significant differences between impermeable and porous bed solutions are found in the backwash which might explain certain sand erosion and deposition phenomena.  相似文献   

12.
《Marine Geology》2004,203(1-2):109-118
Spatial variations in sediment load in the swash uprush and textural properties of sediment in transport were evaluated to investigate the mechanisms responsible for sediment transport during wave uprush. Four streamer traps were deployed at 2.0-m intervals across the swash zone of a sheltered, microtidal sandy beach at Port Beach, Western Australia, over a 4-day period. During these trapping experiments, offshore significant wave heights were 0.3–0.5 m and wave periods were about 10 s. The average width of the uprush zone was 6.9 m and the average uprush duration was 5.9 s. Cross-shore distributions of sediment load for 70 uprush events reveal a maximum in sediment load landward of the base of the swash (at about 20% of swash width) during single events and a maximum closer to mid-swash (at about 40% of swash width) during multiple events characterized by swash interactions. Settling velocity distributions of trap samples during individual uprush events are similar to distributions found on the beach surface, with the lowest settling velocities (finest sediments) near the base of the swash zone and maximum settling velocities (coarsest sediments) around the mid-swash position. It was found that sediment transport during wave uprush occurs through two distinct mechanisms: (1) sediment entrainment during bore collapse seaward of the base of the swash zone and subsequent advection of this bore-entrained sediment up the beach by wave uprush; and (2) in situ sediment entrainment and transport induced by local shear stresses during wave uprush. Both mechanisms are considered important, but the first mechanism is considered most significant during the early stages of wave uprush when sediment is transported mainly in suspension, while the second mechanism is likely to dominate the mid- to later stages of wave uprush when sediment is transported mainly by sheet flow. The relative importance of the two mechanisms will vary between different beaches with the morphodynamic state of the beach (reflective versus dissipative) expected to play a major role.  相似文献   

13.
T.D. Price  B.G. Ruessink   《Marine Geology》2008,251(1-2):98-109
This paper builds on the work of Masselink [Masselink, G., 1993. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. SI 15, 180–197.] on the use of the residence times of shoaling waves, breaking waves and swash/backwash motions across a cross-shore profile to qualitatively understand temporal beach behaviour. We use a data set of in-situ measurements of wave parameters (height and period) and water depth, and time-exposure video images overlooking our single-barred intertidal measurement array at Egmond aan Zee (Netherlands) to derive boundaries between the shoaling zone, the surf zone and the swash zone. We find that the boundaries are functional dependencies of the local relative wave height on the local wave steepness. This contrasts with the use of constant relative wave heights or water levels in earlier work. We use the obtained boundaries and a standard cross-shore wave transformation model coupled to an inner surf zone bore model to show that large (> 5) relative tide ranges (RTR, defined as the ratio tide range–wave height) indicate shoaling wave processes across almost the entire intertidal profile, with surf processes dominating on the beach face. When the RTR is between 2 and 5, surf processes dominate over the intertidal bar and the lower part of the beach face, while swash has the largest residence times on the upper beach face. Such conditions, associated with surf zone bores propagating across the bar around low tide, were observed to cause the intertidal bar to migrate onshore slowly and the upper beach face to steepen. For RTR values less than about 2, surf zone processes dominate across the intertidal bar, while the dominance of swash processes now extends across most of the beach face. The surf zone processes were now observed to lead to offshore bar migration, while the swash eroded the upper beach face.  相似文献   

14.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

15.
For the study of the cross-shore wave-induced hydrodynamics in the swash zone, a numerical model is developed based on the one-dimensional non-linear shallow water (NSW) equations for prediction of hydrodynamic parameters in the swash zone. In order to evaluate the accuracy of the outputs of the numerical model, the model's predictions in terms of water surface elevations and cross-shore velocities, are compared to field data from full-scale experiments conducted on three sites with different beach slope; mild and steep, several bed particle sizes and under various incident wave conditions. The quantitative and qualitative comparison of the results of the numerical model and the full-scale data reveals that the model can generally predict many aspects of the flow in the surf and swash zone on both types of beach. The accuracy is adequate for application in a sediment transport study. Considering the time-history and probability distribution of water surface elevation, the model is generally more accurate on steep beaches than on the mild beach. The model can adequately simulate the dominant frequency across the beach and saturation of higher frequencies on both mild and steep beaches for various incident wave energy characteristics. With regard to the horizontal (cross-shore) velocity, the sawtooth shape of time-history and negative acceleration of water are well predicted by the model for both mild and steep beaches. Due to the uncertainties in maximum and minimum values of velocity data, clear judgement about the accuracy of the numerical model in this matter was not possible. However, the comparison of the minimum velocities (offshore direction) revealed that the application of friction factors below the range which is suggested by literature best match the data.  相似文献   

16.
A simple sand trap is used to measure swash and backwash bedload transport rates on intertidal profiles. Data from sixty-eight beach experiments are used to calculate a mean value of 12.78 kg m?4s?2 for the calibration coefficient in the Bagnold beach equation.  相似文献   

17.
18.
New laboratory experiments have produced detailed measurements of hydrodynamics within swash generated by bore collapse on a steep beach. The experiments are based on a dambreak rig producing a highly repeatable, large-scale swash event, enabling detailed measurements of depths and velocities at a number of locations across the swash zone. Experiments were conducted on two beaches, differentiated by roughness. Results are presented for uprush shoreline motion, flow depths, depth-averaged velocity, velocity profiles and turbulence intensity. Estimates of the time- and spatially-varying bed shear stress are obtained via log-law fitting to the velocity profiles and are compared with the shear plate measurements of Barnes et al. (2009) for similar experimental conditions. Experimental results are compared with model predictions based on a NLSWE model with momentum loss parameterised using the simple quadratic stress law in terms of the depth-averaged velocity. Predicted and measured flow depths and depth-averaged velocities agree reasonably well for much of the swash period, but agreement is not good at the time of bore arrival and towards the end of the backwash. The parameterisation of total momentum loss via the quadratic stress law cannot adequately model the swash bed shear stress at these critical times.  相似文献   

19.
通过波浪水槽实验,开展不同类型波浪作用下的沙质岸滩演化规律研究工作。本次实验研究不考虑比尺,采用1:10与1:20组成的复合沙质斜坡对岸滩进行概化,选取规则波和椭圆余弦波两种典型波浪作用,对波浪的传播、变形和破碎、上爬、回落过程以及波浪作用前后沙质岸滩床面地形进行了观测,探讨波浪作用下沙质岸滩剖面演化规律。本文实验工况中,规则波作用下,岸滩剖面呈现出沙坝剖面和滩肩剖面,椭圆余弦波作用下的岸滩剖面均呈滩肩形态,发现岸滩剖面形态不仅与波浪作用类型、强度、周期等因素相关,还与波浪破碎的强度等因素有关。通过对实验过程中现象的进行观察和分析,引入了卷破波水舌冲击角的概念。对波浪卷破破碎后形成的水流挟沙运动与岸滩剖面形态的关系进行定性分析,对水舌冲击角与Irribarren参数之间的关系进行定量分析,基于Irribarren参数与岸滩剖面形态的关系初步建立了波浪作用下沙质岸滩剖面形态判别关系式。通过本文实验结果和前人实验结果对趋势线进行拟合,求得其判别系数,判别式能够较好地划分淤积型岸滩、侵蚀型岸滩及过渡型岸滩三种岸滩形态。  相似文献   

20.
This paper describes newly obtained, high-frequency observations of beach face morphological change over numerous tidal cycles on a macrotidal sandy beach made using a large array of ultrasonic altimeters. These measurements enable the net cross-shore sediment fluxes associated with many thousands of individual swash events to be quantified. It is revealed that regardless of the direction of net morphological change on a tidal time scale, measured net fluxes per event are essentially normally distributed, with nearly equal numbers of onshore and offshore-directed events. The majority of swash events cause net cross-shore sediment fluxes smaller than ± 50 kg m− 1 and the mean sediment flux per swash event is only O(± 1 kg m− 1) leading to limited overall morphological change. However, much larger events which deposit or remove hundreds of kilograms of sand per meter width of beach occur at irregular intervals throughout the course of a tide. It was found that swash–swash interactions tend to increase the transport potential of a swash event and the majority of the swash events that cause these larger values of sediment flux include one or more interactions. The majority of the larger sediment fluxes were therefore measured in the lower swash zone, close to the surf/swash boundary where swash–swash interactions are most common. Despite the existence of individual swash events that can cause fluxes of sediment that are comparable to those observed on a tidal time scale, frequent reversals in transport direction act to limit net transport such that the beach face volume remains in a state of dynamic equilibrium and does not rapidly erode or accrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号