首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Although the Tsushima Current exhibits a complicated meander in the interior region of the Japan Sea, its path is more regular in the southwest region near the Tsushima Strait, and three branches have often been recognized there by many investigators. However, the detailed structures and temporal variabilities of these branches have not been clarified, and so they are studied here by analysing temperature, salinity and sea level data. It is shown that the existence of the first branch (the nearshore branch along the Japanese coast) can be detected from salinity distributions at least during the period from March to August. The third branch (the Eastern Korean Current) exists in all seasons. On the other hand, the second branch (the offshore branch) is seasonally variable and can be identified only in summer from June to August. Along the Japanese coast of southwest Japan Sea, the main pycnocline intersects the gentle slope on the shelf at a depth between 150 and 200 m. The first branch is found on the coastal side of the line where the main pycnocline intersects the bottom slope. On the other hand, the second branch is formed just on the seaward side of this line. Sea level differences in the Tsushima Strait, i.e., between Hakata and Izuhara and between Izuhara and Pusan, show that the seasonal variation of the surface velocity (or volume transport) is small in the eastern channel and large in the western channel. The period during which the surface velocity and volume transport in the western channel increase corresponds well to the period during which the second branch exists. These results suggest that the effects of bottom topography and oceanic stratification in the Japan Sea as well as the time variation of inflow through the western channel of the Tsushima Strait play important roles in the formation of the second branch.  相似文献   

2.
The connectivity between the interannual salinity variations in the Tsushima and Cheju Straits has been investigated on the basis of historical hydrographic data. Salinity in the Cheju Strait correlates positively with that in the western channel of the Tsushima Strait, but does not show a significant correlation with that in the eastern channel. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses of temperature and salinity in the Cheju Strait revealed that salinity in the strait is associated with the cold bottom water in summer. Drastic freshening in the Cheju Strait occurs in a period when the Cheju Current intensifies. The results allow us to hypothesize that the mechanism of interannual salinity variations in the Cheju Strait and western channel of the Tsushima Strait is as follows. The intrusion of cold bottom water into the Cheju Strait in summer intensifies the Cheju Current by increasing the baroclinicity. Since colder bottom water develops a stronger eastward surface current, the larger volume of the Changjiang diluted water is drawn into the strait, which results in a lower salinity condition in the Cheju Strait. As the water in the Cheju Strait flows into the western channel of the Tsushima Strait, salinity in the western channel varies synchronously. This hypothesis is supported by SVD analysis of temperature in the Cheju Strait and salinity in the Tsushima Strait. The salinity condition in the East China Sea is suggested to be another important influence on salinity in the western channel of the Tsushima Strait.  相似文献   

3.
Temporal variations in temperature and salinity observed in 2004 were investigated on a short time scale in the Tsushima Strait. The data were obtained by long-term in situ measurements at Mitsushima and Futaoi Island using an instrument equipped with a piston-type wiper to avoid biofouling. In addition, the temperature and salinity values of the surface layer obtained by a commercial ferryboat between Hakata and Busan were used to investigate their spatiotemporal variations. Temperature and salinity variations with a time scale of several days had a negative correlation in the summer. This evidence suggests that a warm and less saline water mass, which is considered to be mainly the Changjiang Diluted Water (CDW), flowed intermittently through the Tsushima Strait in summer. In late July 2004, a large low-salinity water mass was detected in the Tsushima Strait. At that time, the freshwater transport through the Tsushima Strait transiently reached about 12 × 104 m3s−1, which is estimated from observed acoustic Doppler current profiler (ADCP) data along a ferryboat line and inferred salinity profiles. This estimated value is more than double the maximum of the climatological monthly mean of the Changjiang discharge. Furthermore, salinity and surface current data obtained by high frequency ocean radar (HF radar) indicate that water properties at Mitsushima may occasionally represent part of the water flowing through the western channel via a countercurrent, although Mitsushima is geographically located in the eastern channel.  相似文献   

4.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

5.
Seasonal Variation of the Cheju Warm Current in the Northern East China Sea   总被引:1,自引:1,他引:1  
The Cheju Warm Current has been defined as a mean current that rounds Cheju-do clockwise, transporting warm and saline water to the western coastal area of Cheju-do and into the Cheju Strait in the northern East China Sea (Lie et al., 1998). Seasonal variation of the Cheju Warm Current and its relevant hydrographic structures were examined by analyzing CTD data and trajectories of satellite-tracked drifters. Analysis of a combined data set of CTD and drifters confirms the year-round existence of the Cheju Warm Current west of Cheju-do and in the Cheju Strait, with current speeds of 5 to 40 cm/s. Saline waters transported by the Cheju Warm Current are classified Cheju Warm Current water for water of salinity greater than 34.0 psu and modified Cheju Warm Current for water having salinity of 33.5–34.0 psu. In winter, Cheju Warm Current water appears in a relatively large area west of Cheju-do, bounded by a strong thermohaline front formed in a "" shape. In summer and autumn, the Cheju Warm Current water appears only in the lower layer, retreating to the western coastal area of Cheju-do in summer and to the eastern coastal area sometimes in autumn. The Cheju Warm Current is found to flow in the western channel of the Korea/Tsushima Strait after passing through the Cheju Strait, contributing significantly to the Tsushima Warm Current.  相似文献   

6.
Hydrographic conditions in the Tsushima Strait revisited   总被引:1,自引:1,他引:0  
Long-term averaged temperature and salinity distributions in the Tsushima Strait are investigated on the basis of a concurrent dataset of the eastern and western channels during 1971–2000. Both temperature and salinity show a clear seasonal variation with weak and strong stratifications in December–April and June–October, respectively. The largest standard deviations occur in summer around the thermocline for temperature and in the surface layer for salinity. This indicates large interannual variability in the development of a thermocline and low salinity water advection from the East China Sea. The water masses in both channels are distinctly different from each other; the water in the western channel is generally colder and fresher than that in the eastern channel throughout the year. Baroclinic transport based on the density distributions shows a seasonal variation with a single peak in August for the eastern channel and double peaks in April and August for the western channel. However, this cannot explain the seasonal variation in the total volume transport estimated from the sea level differences across the channels. The spatial distribution of baroclinic transport shows a year-round negative transport towards the East China Sea behind the Iki Island in the eastern part of the eastern channel. This negative transport reflects the baroclinic structure between the offshore Tsushima Current Water and cold coastal water. The corresponding southwestward currents are found in both Acoustic Doppler Current Profiler (ADCP) and high frequency (HF) radars observations.  相似文献   

7.
Two different cold waters were found under the surface mixed layer in Tsushima Straits and the southwestern Japan Sea in autumn 2004. One is cold saline water with a low concentration of dissolved oxygen, and the other is cold less saline water with a high concentration of dissolved oxygen. The older saline water originates from the bottom of the East China Sea, strongly influenced by the Kuroshio water with high salinity. The bottom density in the eastern channel of the Tsushima Straits is coincident with that of the East China Sea in autumn, corresponding to the season when the cold saline water was frequently found in the Tsushima Straits. The newer less saline water originates from the front of Tsushima Warm Current between the Tsushima Warm Current water and the surface cold water in the Japan Sea. This water is formed by subduction above the isopycnal surface from the front of the Tsushima Warm Current.  相似文献   

8.
The Korea (Tsushima) Strait is an important seaway through which the warm Tsushima Current flows into the East Sea (Japan Sea). A paleogeographic map constrained by a regional sea-level curve developed on the basis of a number of recent 14C radiocarbon dates suggests that the Korea Strait was not closed during the last glacial period. Rather, it was open as a channel-like seaway linking the western North Pacific and the East Sea. Some fraction of the paleo-Tsushima Current inflow presumably continued at that time through the Korea Strait. The activity of the paleo-Tsushima Current is evidenced by the distribution pattern of river-derived lowstand deposits, consisting of a beach/shoreface complex and lowstand deltaic wedges. Received: 16 April 1999 / Revision accepted: 25 February 2000  相似文献   

9.
The northward intruding eddy along the East coast of Korea   总被引:5,自引:0,他引:5  
The current structures and their seasonal variations in the East Korean Warm Current (EKWC) region, which plays a significant role in the northward transport of warm and saline waters, were described by combining the sea surface temperature (SST) data of consecutive satellite inferred (IR) images and hydrographic data. The SST patterns in winter-spring clearly showed that the small meander of thermal front originating from the Tsushima/Korea Strait formed close to the Korean coast and grew an isolated warm eddy with horizontal dimension of order 100 km. Such warm eddy began to intrude slowly northward from spring to summer. At that time, interactions with neighboring synoptic warm eddy [Ks] around the Ulleung Basin were found to have strongly influence the movement of the intruding eddy and its structural change. In autumn, after the northward movement stopped at the north of eddy [Ks], the relative stable northward current along the Korean coast were formed. The evidence from observational results does not support a persistent branching of the EKWC from the Tsushima/Korea Strait, but a seasonal episodic supply of warm and saline waters due to the northward intruding eddy process described above.  相似文献   

10.
Interannual salinity variations in the Tsushima Strait are investigated on the basis of historical hydrographic data. The EOF analysis revealed that the most dominant mode is the in-phase salinity variation between the eastern and western channels. The time coefficients of the EOF first mode in summer show a negative correlation with the Changjiang discharge, which indicates that salinity in the Tsushima Strait tends to decrease over summer, related to a large discharge of the Changjiang. The eigenvectors of the first mode are larger in the eastern channel than those in the western channel, though the low salinity water mainly flows through the western channel. This is because the low salinity water spreads into the eastern channel as well as the western channel over summers with a large discharge of the Changjiang. The out-of-phase salinity variation between the channels is extracted as the EOF second mode; this is the predominant variation in the western channel. The time coefficients of the second mode in summer show no significant correlations to the volume transports through the western channel and the transport differences between channels. A relationship between the EOF second mode and variations in the wind stress over the East China Sea is suggested.  相似文献   

11.
依据自适应数值模型,模拟了东中国海冬、夏季三维斜压Lagrange环流。模拟发现:台湾暖流的上层水来自台湾海峡入流和台湾东北黑潮的表层水;50m以下的深底层水主要由台湾东北黑潮的次表层水入侵陆架生成。冬季对马暖流外海一侧主要由黑潮水构成,而其近陆一侧由台湾暖流和陆架混合水构成,西朝鲜沿岸流在济州海峡汇入对马暖流;夏季它还包含转向后的长江冲淡水。冬季黄海暖流并非对马暖流的直接分支,黄海暖流水是对马暖流水和陆架水混合而成,这与传统观点相悖,而与中韩黄海水循环动力学合作调查结果一致。黄海暖流东西两侧分别为2支向南流动的滑岸流。夏季黄海环流构成基本封闭的逆时针环流。冬季渤海环流主要有一逆时针大环流,但辽东湾的环流是顺时针向的。渤海环流冬强夏弱,水流在渤海海峡北进南出。  相似文献   

12.
Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and 54 mg m-3 inside Jin-hae Bay and adjacent coastal bays and 0.5 and 8 mg m-3 in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature (θ) and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water (θ<19°C; S<32.4) and warm and high saline subsurface water (θ>12°C; S>34.4) at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.  相似文献   

13.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

14.
The Fukuoka Prefectural Fisheries Experimental Station has been carrying out oceanographic observations on a fixed line in the East Tsushima Strait since 1913. Seasonal and secular changes in water temperature were investigated based on these data from 1919 to 1979. The deviations from the mean water temperature were large in summer, especially in the thermocline layer at 50 m. Abnormally high temperatures appear from spring to autumn whereas abnormally low temperature appears from autumn to spring. The secular variation of water temperature in the East Tsushima Strait shows a 6- or 8-year periodicity from 1919 to 1943 and a 6-year periodicity after 1948.  相似文献   

15.
I summarize the variations of the path of the Kuroshio and of the Tsushima Current mainly based on the results of my studies. The Tsushima Current forms three branches just after it enters the Japan Sea through the Tsushima Strait. The first and third branch currents flow along the Japanese and Korean coasts, respectively, and the second branch current flows from the western channel of the Tsushima Strait to the west of the Oki Islands only in summer from June to August. Properties of the topographic waves which are thought to work on the formation of the second branch are described mainly in terms of the dispersion relations. The Kuroshio has three typical paths,i.e., the nearshore and offshore non-large-meander paths and the typical large-meander path. The Kuroshio alternately takes the nearshore and offshore paths in the non-large-meander period, occasionally changes from the nearshore nonlarge-meander path to the large-meander path and, after having taken the large-meander path for several years, changes to the offshore non-large-meander path. Sea levels south of Japan are clearly different between the non-large-meander and large-meander periods, while they are not different between the periods of the nearshore and offshore non-large-meander paths. But, sea level and water properties in the coastal region show remarkable features during short periods of transitions between the typical non-large-meander paths. Future problems and subjects of studies on these currents are indicated. Especially, importance of velocity monitoring of the Kuroshio is emphasized, and a design of the observation across the Tokara Strait is proposed.  相似文献   

16.
台湾海峡生态系统对海洋环境年际变动的响应分析   总被引:13,自引:2,他引:13  
通过比较1985~2001年的海表温度与其间收集的现场营养盐、浮游植物和浮游动物丰度及群落结构变动信号,以及1971~1998年的中上层鱼类渔获量变动信息,发现了台湾海峡生态系统对物理环境年际变动产生的响应迹象.1997 年夏季台湾海峡处于偏冷状态,南部近岸上升流强度减弱;1997年冬季正值一个较强的暖事件发展到顶峰,北上入侵暖水强度增强、浙闽沿岸冷水强度减弱.导致这两个时期营养盐分布特征改变,发生了一系列从浮游植物到浮游动物,从生物量到群落结构的异常响应,暖水性中上层鱼类渔获量则似乎呈现出El Niño年偏高的趋势.根据有限的辅助证据推测,El Niño很可能不是控制台湾海峡海洋环境年际变动的强信号,而台湾海峡的气候海洋生态长期低频变动可能更多地受到东亚季风中国边缘海系统的控制.  相似文献   

17.
基于ROMS(Regional Ocean Modeling System)模式,对西北太平洋海域进行了水平分辨率高达4km的水动力环境数值模拟,该分辨率可以很好地分辨我国东海陆架环流以及中尺度涡旋等过程,此外模式考虑了8个分潮,模式结果很好地再现了黄、东海陆架环流等。基于模式结果,对"桑吉"号泄漏物质可能的扩散和迁移轨迹进行了数值模拟分析。在"桑吉"号沉船位置的表、底Ekman层内,释放拉格朗日粒子和示踪物来示踪"桑吉"号泄漏物质的可能影响范围。拉格朗日粒子和示踪物模拟结果表明:在未来3个月,"桑吉"号泄漏物质对我国黄海的影响较小,其主要随着对马暖流进入日本海和随着黑潮进入日本九州以南的太平洋海域。随着冬、春的季节转换,三个月后,北风会减弱,减弱风场的试验表明,风场减弱会减少泄漏物质向黄海的输送。5月份后黄海冷水团逐渐形成,由于斜压效应,在黄海深层水中会逐渐建立起气旋式环流,从而进一步阻碍了"桑吉"号泄漏物质向黄海的输送,该气旋式环流有利于"桑吉"号泄漏物质通过对马海峡向日本海的输送,而会抑制底层泄漏物质向我国黄海西侧的输送。  相似文献   

18.
Sea surface temperature (SST) and sea surface salinity variations at Fukue Island (located southwest of the Tsushima Straits) were investigated. In spring, low-frequency SST fluctuations with periods of 10–20 days predominate. Synthetic analysis of in situ observation and satellite infrared image reveals that these SST fluctuations are caused by movement of mixed warm water masses which have a temperature intermediate between those of the Kuroshio and the East China Sea (ECS) shelf waters. Since these fluctuations do not correspond with those in the Tsushima Straits, it is indicated that these water masses can hardly pass the Tsushima Straits while retaining their original water properties. In July, SST fluctuations with a period of several days are also found at Fukue Island. Since these SST fluctuations show an opposite correspondence with its salinity fluctuations and a good correspondence with the SST fluctuations at Okinoshima in the Tsushima Straits, it is inferred that warm and low-salinity water originated from the ECS shelf water causes these fluctuations and intrudes into the Tsushima Straits.  相似文献   

19.
The regional distribution of dinoflagellates was investigated in the surface waters surrounding Hokkaido in May, August, and October, 1983. Among the total of 92 species identified, 37 species appeared throughout the investigation period. A similarity analysis identified six assemblages at Cλ=0.66. It was shown that each assemblage was closely related to the currents and the water temperature. Assemblage I consisted of 80% of the total samples and was subdivided into two groups-cold and warm water species in the Tsushima Current. Cold water species were widely spread in the Tsushima and Soya Currents in May and shifted to the Low Saline Water in October while warm water species were dominant in the Tsushima and Soya Currents in October. The regional abundance of shellfish toxic dinoflagellates,Dinophysis fortii andProtogonyaulax tamarensis, was also revealed.  相似文献   

20.
Data on the Tsushima Current and its neighboring coastal current are analyzed to examine short-term variability of the currents and storm events due to typhoons. A three current-meter array was deployed in a strong current region of the east Tsushima channel during summer in 1983 and 1984, and other two current-meter arrays in the eastern coastal area of the channel (the Sea of Genkai) in the summer and autumn in 1983. The observations of coastal current show that the kinetic energy of the subtidal current component was larger in summer than in autumn by a factor of about 2. A comparison of the wind stresses and the estimated values of mixed layer depth in the summer and autumn season suggest that this seasonal change is closely associated with that of the mixed layer depth rather than with that of the wind stress. The Tsushima Current was greatly influenced by two storm events: its speed increased by a factor of 2 in one event and decreased to nearly zero in the other. Such a large variation of mean current during the storm was observed only for the Tsushima Current and not for the coastal current, suggesting that the Tsushima Current may temporarily change its regular course as a result of a storm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号