首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

2.
This study presents a review of extensive literature and reports new findings extracted from previously collected cores. Globally lowered sea level during the last glacial maximum (LGM) reduced the cross-sectional area in the Korea Strait, minimizing volume transport of the paleo-Tsushima Current and increasing freshwater input to the East Sea. The higher supply of freshwater played an important role in compositional changes of surface water in the sea, indicated by low sea surface salinity (down to about 20‰) and light d 18O of planktonic Foraminifera (lighter than 1‰) recorded in core sediments. The Korean fluvial systems (Nakdong and Seomjin rivers) emptying into the southeastern sea of Korea may have contributed substantially to freshwater supply to the surface layer of the LGM East Sea, although Chinese paleo-river (Huanghe and Yangtze rivers) waters, together with the paleo-Tsushima Current, also seem to have supplied some freshwater to the sea. The higher supply of river waters to the East Sea is strongly evidenced by the high amount of terrigenous material (quartz, feldspar and rock fragments) in core sediments. In addition, high magnetic susceptibility, high grain density, and high C/N ratios were documented in cores MB98PC-11 and 95PC-1. In contrast with earlier studies, we propose that Korean rivers played a more substantial role in supplying freshwater to the East Sea during the LGM than previously thought.  相似文献   

3.
Recent investigation suggests that volume transport through the Tsushima/Korea Strait often has double peaks during the summer to autumn period with decreasing transport in September. The satellite-observed wind changes from weak northwestward (across-strait) in summer to strong southwestward (along-strait) in early autumn (September) in the strait. Such a strong along-strait wind is related to tropical cyclones, which frequently pass through the East China Sea in September. The effect of the along-strait wind component on the transport variation is examined using a three-dimensional numerical model. The simulated volume transport through the Tsushima/Korea Strait shows realistic seasonal and intra-seasonal variations. According to sensitivity experiments on local winds, the transport variations in September are mainly generated by strong along-strait (southwestward) wind rather than weak across-strait wind. The strait transport responds to the along-strait wind (southeastward), which produces a sea level increase along the Korean coast, resulting in the geostrophic balance across the strait. The transport minimum through the Tsushima/Korea Strait in September can be determined by the combination of the across-strait geostrophic and along-strait ageostrophic balances. The Editor-in-Chief does not recommend the usage of the term “Japan/East Sea” in place of “Sea of Japan”.  相似文献   

4.
Downstream transition of the Tsushima Current west of Kyushu in summer   总被引:1,自引:0,他引:1  
In order to clarify detailed current structures west of Kyushu, ADCP measurements were carried out in July and September 1990 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows. On the basis of these results, together with data of routine oceanographic observations, we study the downstream transition of the Tsushima Current west of Kyushu in summer. In the southwest of the Goto Islands, a northward current identified as the Tsushima Current was clearly found. In the south of Cheju, a westward current bifurcated from the Tsushima Current. In the northwest of the Goto Islands, the Tsushima Current narrowed and its velocity became strengthened. Salinity of the Tsushima Current water was much diluted by a current from the Cheju Strait. Near the west coast of the Goto Islands, a countercurrent bifurcating from the Tsushima Current often occurred. The volume transport of the Tsushima Current was 2.3 Sv (1 Sv=106 m3s–1) on the northern side of latitude 31°N. The substantial bifurcation of the Tsushima Current toward the Eastern and Western Channels of the Tsushima Strait occurred in the vicinity of Tsushima. The volume transport through the Western Channel was two to three times larger than that through the Eastern Channel. The baroclinic component in volume transport of the Tsushima Current west of Kyushu was much smaller than that in the Japan Sea.  相似文献   

5.
Seasonal Variation of the Cheju Warm Current in the Northern East China Sea   总被引:1,自引:1,他引:1  
The Cheju Warm Current has been defined as a mean current that rounds Cheju-do clockwise, transporting warm and saline water to the western coastal area of Cheju-do and into the Cheju Strait in the northern East China Sea (Lie et al., 1998). Seasonal variation of the Cheju Warm Current and its relevant hydrographic structures were examined by analyzing CTD data and trajectories of satellite-tracked drifters. Analysis of a combined data set of CTD and drifters confirms the year-round existence of the Cheju Warm Current west of Cheju-do and in the Cheju Strait, with current speeds of 5 to 40 cm/s. Saline waters transported by the Cheju Warm Current are classified Cheju Warm Current water for water of salinity greater than 34.0 psu and modified Cheju Warm Current for water having salinity of 33.5–34.0 psu. In winter, Cheju Warm Current water appears in a relatively large area west of Cheju-do, bounded by a strong thermohaline front formed in a "" shape. In summer and autumn, the Cheju Warm Current water appears only in the lower layer, retreating to the western coastal area of Cheju-do in summer and to the eastern coastal area sometimes in autumn. The Cheju Warm Current is found to flow in the western channel of the Korea/Tsushima Strait after passing through the Cheju Strait, contributing significantly to the Tsushima Warm Current.  相似文献   

6.
Numerical experiments were performed in order to investigate the effects of variations of the transport through the Korea/Tsushima Strait, an inlet of the Japan/East Sea, on the upper layer circulation in the JES based on a 10-month transport observation from May 1999 to March 2000 (Perkins et al., 2000). All external forcings to the model were annual mean fields, except the transport variation through the Korea Strait. In the experiments where the periodic variation of the transport repeated continuously sinusoidally by several periods, strong variability of sea surface height (SSH) was detected in the region extending from the Korea Strait to the Japanese coast due to the geostrophy of the buoyancy forcing at the Korea Strait. The region along the Korean coast is more sensitive to the long-term variations than the short-term (≤60-day period) ones. In two experiments forced by realistic and monthly mean transport, the difference of rms of sea surface height was largest at the Japanese coast and relatively large at the East Korean Warm Current separation region (128∼130°E, 39∼41°N) and to the east of Yamato Rise. The distribution of difference of eddy kinetic energy at 100 m depth between the two experiments was similar to that of the rms of SSH. In the distributions of mean SSH and mean kinetic energy at 100 m depth the realistic transport invokes eddy variability to interact with mean current resulting in the changes of the mean SSH and the mean kinetic energy at the East Korean Warm Current separation region, but it does not produce conspicuous changes in the mean fields of entire JES compared with the mean fields forced by the seasonal transport.  相似文献   

7.
本文全面地分析了此段海流的流路与流速结构,首次提出研究海域近底层的环流示意图。指出在夏季,韩国南岸和日本九州北岸均存在着一支南下的逆流,九州西岸出现两种或多种形式的流路。对马暖流在源地流速很弱,流向不稳定,流路时隐时显不明显,只有离开源地后才逐渐显示出一支海流轮廓;强流区在朝鲜海峡附近。该海流可明显地划分为三段。流速夏强冬弱,夏季流幅宽约80km。  相似文献   

8.
Sedimentological and micropaleontological characteristics of core sediments from the outer shelf of the Korea Strait, which connects the northern East China Sea and the East Sea (Sea of Japan), were investigated to elucidate the paleoceanographic environment, especially the timing of the Kuroshio inflow, since the last glacial maximum. The core sediments, containing continuous records of the last 15,000 years, are characterized by a relatively high mud content (more than 50%, on average) and well-developed tide-influenced sedimentary structures. Their mineralogy suggests that the material originated from the paleo-Nakdong River system, which extended across the shelf of the Korea Strait during low sea-level periods. Planktonic foraminifers reveal a series of well-defined changes in paleoceanographic conditions during the late Pleistocene–Holocene. Down-core variations in the abundance of four foraminiferal assemblages, i.e., cold, coastal, tropical–subtropical, and Kuroshio water groups comprising characteristic planktonic species, suggest the occurrence of a distinct paleoenvironmental change in the surface water at 7,000 years b.p., i.e., from 15,000 to 7,000 years b.p., the area was influenced by coastal waters whereas since ca. 7,000 years b.p., it has been under the influence of open-sea water related to the Kuroshio Current flow, associated with both higher temperature and higher salinity. In particular, Pulleniatina obliquiloculata increased markedly in abundance at this time, documenting the inflow of the Kuroshio into the study area. These data indicate that the coastal water stage terminated at ca. 7,000 years b.p. when the warm Kuroshio and its major branch, the Tsushima Current, began to flow into the East Sea, as is the case today. The intrusion of the Tsushima Current through the Korea Strait after ca. 7,000 years b.p. resulted in abrupt changes in sedimentation rates and a dramatic increase in abundance of the Kuroshio indicator species, P. obliquiloculata.  相似文献   

9.
The mean circulation of the surface layer of the southwestern Japan/East Sea (JES) was examined using current measurements collected at 15 m by satellite-tracked drifters and merged sea level anomalies from satellite altimeters. The study of circulation patterns in this paper focused on the inflow passing through the western channel of the Korea Strait from the East China Sea. Empirical Orthogonal Function (EOF) analysis of non-seasonal sea level anomalies revealed that significant energy in the circulation pattern of Ulleung Basin was controlled by the inflow conditions through the Korea Strait. Three circulation patterns were identified that depended on the initial relative vorticity of the inflow. When inflow had initially large negative vorticity, the flow gained more negative vorticity due to deepening of the bottom (stretching) and then turned right after entering the JES. The inflow then followed the path of the Tsushima Warm Current along the coast of Japan. When the inflow was strong, with a speed in excess of 55 cm/s and with a large positive vorticity, potential vorticity appeared to be conserved. In this case, the EKWC followed isobaths along the coast and then left the coast, following topographic features north of Ulleung-Do. The northward flowing jet developed inertial meandering after leaving the coast, which is a characteristic of many western boundary currents. The regular, bimonthly deployments of drifters in the western portion of the Korea Strait revealed that splitting or branching of the flow through the western channel of the Korea Strait occurred only 15% of the time. And splitting or branching rarely occurred during the fall and winter seasons, when the inflow splitting was previously reported in hydrographic surveys. The time-averaged circulation map of the EKWC and its seaward extension were considerably enhanced by using regularly sampled geostrophic velocities calculated from sea level anomalies to remove biases in the mean velocity that were caused by irregular spatial and temporal drifter observations. The East Korean Warm Current, a mean coastal current along the Korean coast, behaved like the simple model by Arruda et al. (2004) in which the generation of the Ulleung Warm Eddy and the meandering circulation pattern were well reproduced.  相似文献   

10.
The 10-year series of observations of currents directed along the Korea/Tsushima Strait, which were measured with an acoustic Doppler current profiler aboard a ferry boat that cruised several times a week between the Hakata (Japan) and Pusan (South Korea) ports, is analyzed. Robust estimation methods are used to separate the tidal signal from the inhomogeneous series of the current data in the problem of the harmonic analysis. The MU2, NO1, PHI1, and J1 constituents have been estimated in addition to the MSF, MF, Q1, O1, P1, K1, N2, M2, S2, and K2 tidal harmonics detected previously. The annual variations in the amplitude of the M2 fundamental harmonic have also been taken into account. The current series cleared from the tidal signal has been processed in order to analyze the spatio-temporal variability of the volume transport through the Korea Strait. The normal annual velocity of the water inflow into the Japan Sea through the Korea Strait was 2.77 × 106 m3 s?1. The ratio of the flow rates in the eastern and western zones of the strait separated by the Tsushima Islands was 2/3. Considerable seasonal variations in the discharge are observed in the western strait zone: the flow rate annual maximum in October is 1.75 times as high as the minimum in February. An insignificant (not more than 0.1 × 106 m3 s?1 on average) southward flow can cross the eastern channel. Mesoscale vortices are generated in the lee of the Tsushima Islands when the northeastern current flows around them. The energy spectrum of the total nonseasonal flow rate through the Korea Strait has been constructed in the frequency range of 8–500 days. The spectrum has three significant maximums near periods of 10, 19, and 64 days. It has been indicated that this spectrum flattens at low frequencies (<0.1 day?1) in the vicinity of the formation of mesoscale vortices behind the Tsushima Islands.  相似文献   

11.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

12.
Satellite-derived sea surface temperatures illustrate the variability of the path of the Tsushima Current in the Sea of Japan. In the spring of 1981 the Tsushima Current did not split as it left the Korea Strait and flowed into the Sea of Japan, which is contrary to the historical concept of branching. Warm water remained along Honshu, the main island of Japan, making a strong front oriented in an east-west direction. Hydrographic data confirm that this spring condition lasted through to the fall of 1981. On the other hand, during the springs of 1982 and 1983 the branching is evident from satellite images: one branch flowed northward along the east coast of Korea, and the other flowed eastward along Honshu of Japan.  相似文献   

13.
OntheoriginoftheTsushimaWarmCurrentWater¥TangYuxiangandHeung-JaeLie(FirstinstituteOfOceanography,StateOceanicAdministration,Q...  相似文献   

14.
A significant surface net heat loss appears around the Kuroshio and the Tsushima Warm Current regions. The area where the surface heat loss occurs should require heat to be supplied by the current to maintain the long-term annual heat balance. Oceanic heat advection in these regions plays an important role in the heat budget. The spatial distribution of the heat supply by the Tsushima Warm Current near the surface was examined by calculating the horizontal heat supply in the surface layer of the East Sea (the Japan Sea) (ESJS), directly from historical sea surface temperature and current data. We have also found a simple estimation of the effective vertical scale of heat supply by the current to compensate net heat loss using the heat supplied by the current in the surface 10 m layer. The heat supplied by the current for the annual heat balance was large in the Korea/Tsushima Strait and along the Japanese Coast, and was small in the northwestern part of the ESJS. The amount of heat supplied by the current was large in the northwestern part and small in the south-eastern part of the ESJS. These features suggest that the heat supplied by the Tsushima Warm Current is restricted to near the surface around the northeastern part and extends to a deeper layer around the southeastern part of the ESJS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Water, Salt, Phosphorus and Nitrogen Budgets of the Japan Sea   总被引:1,自引:0,他引:1  
Water, salt, phosphorus and nitrogen budgets of the Japan Sea have been calculated by box model analysis using historical data. Average residence time of the Tsushima Warm Current Water in the upper 200 m is 2.1 years and that of the Japan Sea Proper Water is 90 years. The salt flux from the Tsushima Strait balances those through the Tsugaru and Soya Straits. Average residence times of phosphorus and nitrogen from the Tsushima Strait are 2.2 years and 1.6 years, respectively, in the upper 200 m of the Japan Sea. Total nitrogen/total phosphorus ratios of riverine load, the Tsushima Warm Current water and the water in the Japan Sea are 16.4, 16.6 and 11.3, respectively. This suggests that denitrification is dominant in the Japan Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The connectivity between the interannual salinity variations in the Tsushima and Cheju Straits has been investigated on the basis of historical hydrographic data. Salinity in the Cheju Strait correlates positively with that in the western channel of the Tsushima Strait, but does not show a significant correlation with that in the eastern channel. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses of temperature and salinity in the Cheju Strait revealed that salinity in the strait is associated with the cold bottom water in summer. Drastic freshening in the Cheju Strait occurs in a period when the Cheju Current intensifies. The results allow us to hypothesize that the mechanism of interannual salinity variations in the Cheju Strait and western channel of the Tsushima Strait is as follows. The intrusion of cold bottom water into the Cheju Strait in summer intensifies the Cheju Current by increasing the baroclinicity. Since colder bottom water develops a stronger eastward surface current, the larger volume of the Changjiang diluted water is drawn into the strait, which results in a lower salinity condition in the Cheju Strait. As the water in the Cheju Strait flows into the western channel of the Tsushima Strait, salinity in the western channel varies synchronously. This hypothesis is supported by SVD analysis of temperature in the Cheju Strait and salinity in the Tsushima Strait. The salinity condition in the East China Sea is suggested to be another important influence on salinity in the western channel of the Tsushima Strait.  相似文献   

17.
东海和南黄海夏季环流的斜压模式   总被引:17,自引:6,他引:17  
王辉 《海洋与湖沼》1996,27(1):73-78
基于拉格朗日余流及其输运过程的一种三维空间弱非线性理论,引进了黑潮边界力及长江径流,给出了东海和南黄海的夏季环流及上升流区的分布。计算结果表明:在黑潮西侧存在着台湾-对马暖流系统;进入朝鲜海峡的对马暖流来自台湾暖流、黑潮、东海混合水和西朝鲜沿岸流;黄海暖流主要来源于东海混合水,表面有部分来自对马暖流;闽浙沿岸存在上升流区且构成一带状区域;在长江口外、东海东北部和陆坡上也存在在上升流式;陆坡处上升流  相似文献   

18.
Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves are summarized. Observations using acoustic Doppler current profilers (ADCPs) suggest that the connectivity of mean-volume-transports is incomplete between the Tsushima (2.6 Sverdrups; 1 Sv = 106 m3/s) and Taiwan Straits (1.2 Sv). The remaining 1.4-Sv transport must be supplied by onshore Kuroshio intrusion across the East China Sea shelf break. The Yellow Sea Warm Current is not a persistent ocean current, but an episodic event forced by northerly winter monsoon winds. Nevertheless, the Cheju Warm Current is detected clearly regardless of season. In addition, the throughflow in the Taiwan Strait may be episodic in winter when northeasterly winds prevail. The throughflow strengthens (vanishes) under moderate (severe) northeasterly wind conditions. Using all published ADCP-derived estimates, the throughflow transport (V) in the Taiwan Strait is approximated as
where V 0, V 1, K are 1.2 Sv, 1.3 Sv, and 157 days, respectively, t is yearday, and T is 365.2422 days (i.e., 1 year). The difference between the throughflow transports in the Tsushima and Taiwan Straits suggests that the onshore Kuroshio intrusion across the shelf break increases from autumn to winter. The China Coastal Current has been observed in winter, but shelf currents are obscure in summer.  相似文献   

19.
黄、东海水母质点追踪影响因素分析   总被引:5,自引:3,他引:2  
基于数值模型采用质点追踪的方法对大型水母的运移规律及其聚集的影响因素进行了研究。本文共设置6个质点释放区,分别从3、4、5月1日释放后追踪至9月30日。主要结论有:(1)采用不含潮汐过程与包含潮汐过程的水动力模式分别对表层质点进行追踪,结果表明含潮汐混合和潮汐非线性效应的POM模式对质点时空分布的模拟较为可靠;(2)基于含潮汐过程的POM模式气候态模拟结果,考虑质点垂直运动进行追踪,质点运移速度较表层追踪大大减慢,进入朝鲜/对马海峡的质点减少;其中济州岛沿岸质点几乎全部穿过朝鲜/对马海峡进入日本海,其它释放区质点最终广泛分布在南黄海以及东海中陆架,主要在黄海潮汐锋区和长江口以南沿岸锋聚集;(3)通过分析不同释放时间对质点在9月末分布的影响发现,质点释放时间偏早,即水母幼体形成较早,将使相对较多的质点向朝鲜/对马海峡聚集。  相似文献   

20.
An internal wavetrain, generated by a tidal current in superposition with the Tsushima Warm Current, has been observed by use of an acoustic echo-sounder upstream of the Shichiri-Ga-Sone Seamounts in the East Tsushima Strait of the Japan Sea. The sea surface above the internal wavetrain was simultaneously observed and was found to be undulated at the wavelength of the internal wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号