首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This experimental research deals with using steel scrap as a heterogeneous catalyst. This catalyzes the oxidation reaction of real textile dye wastewater based on a modified solar photo‐Fenton oxidation process. Morphologic analysis and mapping of the elementary composition of the steel scrap have been carried out by scanning electron microscopy. The effects of concentration of H2O2, the pH of the solution and the catalyst loading on the degradation of textile dye wastewater are elucidated. Kinetic studies have been performed for the decolorization of wastewater under optimum conditions. It could be concluded that the steel scrap is a potential substitute for ferrous salts as a catalyst for the solar photo‐Fenton reaction.  相似文献   

2.
Testing Effluents of the Textile Refining Industry with Biological Methods The environmental problems caused by the manufacture of finished textiles involve a long chain of individual processes. This “textile chain” includes very diverse enterprises of varied size and structure. The textile refiners occupy a key position in the “textile chain”. On the one hand, this is due to their use of an obscurely large number of chemicals which can end up in the wastewater as well as in the textile products. On the other hand, this key role of the textile refining industry is based on their central position between the preproduction stage and the consumers. This study dealt with the textile refining industry's wastewater. As measured by volume and contents of its wastewater, this industry can be counted among the major industrial plants which discharge into municipal wastewater treatment plants. German wastewater legislation includes the provision that substances which are toxic, persistent, capable of accumulating, carcinogenic, fetotoxic or mutagenic be kept out of natural waters as well as technically possible (Wasserhaushaltsgesetz WHG). Several biotest methods for examining the effect of the substances contained in the wastewater were incorporated into the appendix of the German wastewater regulation (Rahmenabwasser-Verwaltungsvorschrift based on § 7a WHG). The aim of this study was to show, with the aid of biotest methods, how strongly the wastewater of textile refining companies is polluted as compared to other known industrial branches and to what degree the pollution of these wastewaters is eliminated by the treatment in wastewater treatment plants. Finally, we experimented to find out which biotest methods were suited for the examination of these wastewaters. The study's results show that the ecotoxicity of the textile refining industry's wastewater was only extraordinary high in isolated cases as compared to other examined branches of industry. The textile wastewaters exhibit values of GL = 3 to GL = 96 in the luminescent bacteria test, GD = 1 to GD = 192 (with one exception of GD > 30000) in the daphnia test and GF < = 2 to GF = 32 in the fish test. It turned out though, that a large number of the samples from the textile refining companies (27%) reacted mutagenically in the Ames test in their native state. Consecutive tests for chromosomal aberrations (V79 hamster cell test) also showed mutagenic potential in five out of nine native samples. The employed testing methods with fish, daphnia and luminescent bacteria demonstrate a higher sensitivity of the luminescent bacteria and/or the daphnia as opposed to the fish in most cases. As the fish test is controversial anyway on the grounds of animal protection, a replacement of the fish test by these other tests should be aimed at: on account of the different end points of the luminescent bacteria and the daphnia test, a combination of these tests appears most sensible.  相似文献   

3.
Non‐point source pollution in the impervious surface of city, which including dissolved and particulate pollutants, is a significant source of water pollution. Simple first‐order decay models can generally simulate the cumulative wash‐off process of the particulate pollutants. There is inadequate knowledge as to whether or not they are suitable for dissolved pollutants. This study presents a mathematical wash‐off model for dissolved pollutants, which combines analytical equations for overland flows and the exponential equation for the pollutant wash‐off. A series of laboratory experiments have been conducted to verify this wash‐off model. It shows that the pollutant concentration and pollutant transport rate can be predicted well by the newly developed equations. It is found that the pollutant concentration monotonically decreases to zero as the accumulated pollutants are washed off, whereas the pollutant transport rate first increases to the maximum value and then decreases to zero. The maximum pollutant transport rate is found to increase with the decrease of the arrival time of the maximum value. The difference between the simplified exponential model and the amended wash‐off equation depends on the initial residual percentage (Pc), but the present equation generally provides a more accurate representation of the wash‐off process of dissolved pollutants.  相似文献   

4.
Anaerobic digestion (AD) is a highly nonlinear time‐varying process commonly used for biological wastewater treatment, which is subject to large disturbances of both influent concentrations, and flow rates that may lead the process to a breakdown. In order to compensate the effect of these disturbances, the dynamics of the main state variables – including biomass – must be closely monitored and used to improve the process performance. However, AD processes still suffer from a lack of reliable and cheap sensors of key process variables to insure the right process operation. This has led to the development of estimation schemes, which infer the information of such key variables from the available measurements. Nevertheless, reliable measurements are not always possible to get because these readings may be corrupted by noise or erroneous due to sensor failures and as a consequence, they may lead to deteriorated control efforts and the eventual crash of the AD process. In this article, we propose an integrated system for the detection, isolation, and analysis of faults in AD processes by using interval observers (IO). The proposed approach was experimentally implemented on a 1‐m3 pilot scale anaerobic digester. Based on the comparison between the measured outputs and their corresponding estimates, results show that this approach was able to detect sensor failures as well as faults in the basic hypotheses made during the design step.  相似文献   

5.
The fate of the steroid hormones 17 β‐estradiol, estrone, estriol, 16 α‐hydroxyestrone, and β‐estradiol 17‐acetate, the hormone‐conjugates β‐estradiol 3‐sulfate and estrone 3‐sulfate, and the oral contraceptives 17 α‐ethinylestradiol and mestranol were studied during wastewater treatment as wastewater treatment plants are the major source contamination of urban surface waters with steroid hormones. The elimination efficiencies of three different concepts of WWTPs, i. e., activated sludge versus trickling filter, were compared over four weeks at different weather conditions. While larger WWTPs operating on activated sludge eliminated hormones more constantly than smaller WWTPs, heavy rainfall events led to a collapse of the elimination efficiency. By using trickling filter techniques for the treatment of wastewater an elimination of the steroid hormones could not be observed. Additionally, mass flows on a per person basis are compared. In the three experiments, which ran continuously for four weeks each, it turned out that the concentrations of ethinylestradiol and mestranol were below 6 ng/L in all samples. The inflow concentrations were 70 to 82 ng/L (estrone), 17 to 44 ng/L (estradiol), 61 to 130 ng/L (hydroxyestrone), 189 to 255 ng/L (estriol), 10 to 17 ng/L (estrone‐3‐sulfate) and about 28 ng/L (estradiol‐3‐ sulfate). While in the activated sludge treatment plants the elimination of estrone was 90 and 50%, respectively, estrone was formed from precursors in the trickling filter plant. A similar situation occurred for 17β‐estradiol, estrone 3‐sulfate, and estradiol 3‐sulfate. Hydroxyestrone was eliminated with similar efficiencies in all wastewater treatment plants (64 to 82%), as well as estriol (34 to 69%). Accordingly, the emissions of the wastewater treatment plants differed largely and were not attributed to the size of the respective plant, only.  相似文献   

6.
Water pollution exerts a pressure of selection on algal populations. In spite of a possible adaptation, often a changed diversity and sociological structure result, from which other effects on higher levels of the nutrient chain may emanate. There are represented some biological indices for characterizing algal communities which may serve as a biological measure of pollution and selfpurification, the problem of diversity being especially taken into account. Moreover, algal tests are used for representing the trophic situation and for determining the limiting nutrient, but also for determining the toxic influencing of biocenosis by hydrocarbons, too. Special attention is paid to heavy metals with regard to their synergistic action and bioaccumulation. On the other hand, the mass culture of algae is a valuable method of wastewater treatment and the recovery of valuable materials, and algae ponds provide an important technique for advanced wastewater purification.  相似文献   

7.
This article addresses the question whether time‐lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time‐lapse techniques to follow such a production has not previously been investigated. For hydrocarbon production and CO2 storage, time‐lapse seismics are used to look at reservoir changes mainly caused by pressure and saturation changes in large reservoirs, while for solution mining salt is produced from caverns with a limited lateral extent, with much smaller production volumes and a fluid (brine) replacing a solid (magnesium salt). In our approach we start from the present situation of the mine and then study three different production scenarios, representing salt production both in vertical and lateral directions of the mine. The present situation and future scenarios have been transformed into subsurface models that were input to an elastic finite‐difference scheme to create synthetic seismic data. These data have been analysed and processed up to migrated seismic images, such that time‐lapse analyses of intermediate and final results could be done. From the analyses, it is found that both vertical and lateral production is visible well above the detection threshold in difference data, both at pre‐imaging and post‐imaging stages. In quantitative terms, an additional production of the mine of 6 m causes time‐shifts in the order of 2 ms (pre‐imaging) and 4 ms (post‐imaging) and amplitude changes of above 20% in the imaged sections. A laterally oriented production causes even larger amplitude changes at the edge of the cavern due to replacement of solid magnesium salt with brine introducing a large seismic contrast. Overall, our pre‐imaging and post‐imaging time‐lapse analysis indicates that the effects of solution salt mining can be observed and quantified on seismic data. The effects seem large enough to be observable in real seismic data containing noise.  相似文献   

8.
Polyvinyl alcohol (PVA), the major constituent of desizing water constituting 45% of the total BOD load has a significant environmental impact owing to its poor biodegradability. In order to prevent PVA from being discharged by the effluent stream, modern textile industries opt for membrane based separation techniques using ultrafiltration so that the recovery and recycle of PVA in tandem could be achieved. However, the process of ultrafiltration is still not widely accepted as expected due to the well‐known non‐idealities of concentration polarization and pore blockage. In this article, design and performance characterization of a lab‐scale novel shear enhanced ultrafiltration unit, named as spinning basket membrane (SBM) module are discussed. The proposed module is unique in terms of its inbuilt cleaning facility eliminating the effects of polarization and subsequent periodic fouling leading to its uninterrupted production operation. The test fluid, necessarily a solution of PVA was treated in the proposed module under different parametric conditions with polyvinylidene fluoride (PVDF) membranes of two different molecular weight cut‐off (50 and 100 kDa). After 2 h of continuous operation the permeate flux was observed to be within 95–97% of the respective initial fluxes. Such performance is rarely been attained in practice. Hence, the novelty of the present research is achieved. Considering the performance of the present module in terms of flux regeneration and product recovery, it may be regarded as an efficient device and can be potentially deployed for cleaning of other industrial wastewater.  相似文献   

9.
Slaughterhouse wastewater is one of the main sources of environmental pollutants, containing a high amount of organic matter (chemical oxygen demand (COD), biochemical oxygen demand (BOD)), total nitrogen (TN), total suspended solids (TSS), total phosphorus (TP), grease, and oil. The main aim of the present research is optimizing the coagulation–flocculation process and examining the effects of experimental factors with each other, for example, pH, the concentration of two different coagulants (FeCl3 and alum), rapid mixing rate, and settling time. Therefore, it is aimed to treat slaughterhouse wastewater using the coagulation–flocculation process with the optimization of the response surface methodology (RSM). COD, turbidity, and suspended solids (SS) of the treated wastewater are chosen as the response variables. Furthermore, the optimal conditions for three responses are acquired by employing the desirability function approach. When the experimental results of two coagulants are compared, it is observed that the alum coagulant gave better results for the three responses. The alum coagulant utilized in the present research is able to increase COD, SS, and turbidity removal efficiency by 75.25%, 90.16%, and 91.18%, respectively. It is possible to optimize coagulation–flocculation by utilizing the RSM analysis, which proves that coagulation can pre‐treat slaughterhouse wastewater.  相似文献   

10.
Industrial park wastewater (IPWW) includes complex non‐biodegradable organic compounds. A wastewater treatability study using biodegradability assessment approach was carried out for an industrial park housing mainly textile and machinery sectors. Biodegradable and inert chemical oxygen demand (COD) fractions with soluble and particulate counterparts were experimentally estimated by implementing respirometric methods. Aerobic batch test methods and oxygen uptake rate profiles were used to map kinetic parameters and COD fractions. Denitrification potential was also determined by application of anoxic batch tests. Relevant kinetic constants, stoichiometric, and design parameters were determined for biological processes. Tests were carried out for raw and physico‐chemically pre‐treated IPWW. Hence, it was aimed to assess the effects and necessity of pre‐treatment on biological processes. Biological mineralization, nitrification, and denitrification processes were also designed and tested using a bench scale continuous treatment model for pre‐treated IPWW. The sum of initial inert soluble COD fraction and production of soluble microbial products decreased about 25% for the case of pre‐treated IPWW as compared to raw IPWW. Eighty‐three percent total COD and 89% total Kjeldahl nitrogen removal efficiencies were attained for the modeling experiments of pre‐treated IPWW. Results showed the significance of pre‐treatment if complex strength industrial wastewaters are to be biologically treated.  相似文献   

11.
Window‐based Euler deconvolution is commonly applied to magnetic and sometimes to gravity interpretation problems. For the deconvolution to be geologically meaningful, care must be taken to choose parameters properly. The following proposed process design rules are based partly on mathematical analysis and partly on experience.
    相似文献   

12.
Parsimonious stage–fall–discharge rating curve models for gauging stations subject to backwater complications are developed from simple hydraulic theory. The rating curve models are compounded in order to allow for possible shifts in the hydraulics when variable backwater becomes effective. The models provide a prior scientific understanding through the relationship between the rating curve parameters and the hydraulic properties of the channel section under study. This characteristic enables prior distributions for the rating curve parameters to be easily elicited according to site‐specific information and the magnitude of well‐known hydraulic quantities. Posterior results from three Norwegian and one American twin‐gauge stations affected by variable backwater are obtained using Markov chain Monte Carlo simulation techniques. The case studies demonstrate that the proposed Bayesian rating curve assessment is appropriate for developing rating procedures for gauging stations that are subject to variable backwater. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The present study provides an electrocoagulation method, for the removal of NO3from drinking water using magnesium as the anode and cathode. The experiments are carried out as a function of pH, temperature, and current density. The results show that the maximum removal efficiency of 95.8% was achieved at a current density of 0.25 A/dm2, at a pH of 7.0. The adsorption of NO3preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of the adsorbed molecules. The adsorption process follows a second‐order kinetics model. Thermodynamic studies show that the adsorption was exothermic and spontaneous in nature.  相似文献   

14.
A solid‐phase extraction (SPE)‐gas chromatography (GC)‐mass spectrometry (MS) analytical method was developed for the simultaneous analysis of natural free estrogens and their conjugates in wastewater samples. Natural free estrogens and their conjugates in wastewater were successfully separated by the oasis hydrophilic‐lipophilic balance solid phase extraction (Oasis HLB SPE) method, and the conjugates were initially enzyme hydrolyzed by β‐glucuronidase or arylsulfatase from Helix pomatia prior to derivatization. N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) plus 1% tert‐butyldimetheylchlorosilane (TBDMCS) was chosen as the derivatization reagent, and the most appropriate conditions of derivatization were determined to be at 95°C for 90 min. The recovery ratios of nine target chemicals were determined by spiking them in 1 L of ultra‐purified water or the influent of a wastewater treatment plant (WWTP). The recovery ratios of six out of nine for the analytes ranged from 73.3–114.9% with relative standard deviations (RSD) from 1.6–19.9%. The established method was successfully applied to environmental wastewater samples which were collected from one municipal wastewater treatment plant (WWTP) in Osaka, Japan, for the determination of natural free estrogens and their conjugates. In the influent sample, E1, E2, E1‐3S, E3‐3S, and E1‐3G were detected at concentrations of 16.6, 9.6, 8.2, 21.9, and 3.2 ng L–1, respectively. However, only E1 was detected at a high concentration of 44 ng L–1 in the effluent sample, suggesting that it is the dominant natural free estrogen in the effluent.  相似文献   

15.
Textile industry is one of the fastest growing industries and significantly contributes to the economic growth in Malaysia. However, this industry also has high water consumption and subsequently produces high discharge rate of wastewater with high load of contaminants. The release of dyes into the environment during textile fiber dyeing and finishing processes is a main source of water pollution. Individual wastewater treatment through physical, biological, or chemical method is often very costly and results in large amount of sludge. Thus, there is a need to look for alternative treatment processes that covers from pre to post wastewater treatment stage. This paper reviews the current scenario with respect to textile industry effluent in Malaysia and technologies available for the treatment of the effluent. Prospects, challenges, and recommendations for future direction as well as on‐going research works dedicated to the treatment of textile wastewater are also reviewed in detail.  相似文献   

16.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water.  相似文献   

17.
Solar photocatalytic decolorization and detoxification of batik dye wastewater using titanium dioxide (TiO2) immobilized on poly‐3‐hydroxybutyrate (P(3HB)) film was studied. The effects of initial dye concentration, catalyst concentration, P(3HB) film thickness, and fabrication methods of the nanocomposite films were evaluated against methylene blue, a standard organic dye. It was observed that 0.4 g of P(3HB)‐40 wt% TiO2 removed 96% of the color under solar irradiation. P(3HB) and TiO2, mixed concurrently in chloroform followed by stirring for 24 h showed a more even distribution of the photocatalyst on the polymer surface and yielded almost 100% color removal. The photocatalytic films were able to completely decolorize real industrial batik dye wastewater in 3 h and induced a chemical oxygen demand (COD) reduction of 80%. Reusability of the 0.4 g P(3HB)‐40 wt% TiO2 film in decolorizing the batik dye wastewater was also possible as it gave a high consistent value of decolorization percentage (>80%) even after the sixth repeated usage. Recovery step of the photocatalysts was also not required in this simple treatment system. The decolorized batik dye wastewater had less/no toxic effects on mosquito larvae, Aedes aegypti, and microalgae, Scenedesmus quadricauda indicating simultaneous detoxification process along with the decolorization process.  相似文献   

18.
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable.  相似文献   

19.
At present, Bangladesh has a flood forecasting lead time of only 3 days or so. There is demand for a forecasting lead time of a month to a season. The primary objectives of this paper are to study the variability and predictability of seasonal flooding in Bangladesh, as revealed by large‐scale predictors of the climate across the watersheds. To explore the source of predictability, accessible Bangladesh hydrological indicators are related to large‐scale oceanic variability and to large‐scale atmospheric circulation patterns predicted by general circulation models (GCMs). Correlation analyses between the flood‐affected area (FAA) for July–September and tropical sea‐surface temperature (SST) indicate connections to tropical Pacific and Indian Ocean SSTs, at a short lead time of a month or so. These are related to El Niño–southern oscillation (ENSO). Correlations between the SSTs of the preceding October–December and the July–September FAA are weaker but notable. Forecasts of the FAA using the leading principal components (PCs) of SST were made, which provided good skill with a lead time of a month or so. The streamflows and rainfall observed in Bangladesh have been added to these prediction models. Finally, the SST PCs were replaced with PCs of GCM prediction fields (precipitation). The prediction models at short lead time that were constructed for FAA were of generally similar levels of skill to that for SST. This is encouraging, as it suggests that linkages with SST can be successfully recovered in a physical model of the climate system in Bangladesh. This study concludes that seasonal flood prediction in Bangladesh is possible from the unusually warm or cold SST in parts of the tropics. This predictability can be enhanced with the information achievable from monitoring the downstream streamflows (which are generated mainly from upstream rainfall conditions) in advance of the flooding season. Finally, this study recommends formalizing a regional cooperation among the countries in the principal co‐basin areas of the Ganges–Brahmaputra–Meghna to achieve this goal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Sediment flux dynamics in fluvial systems have often been related to changes in external drivers of topography, climate or land cover. It is well known that these dynamics are non‐linear. Recently, model simulations of fluvial activity and landscape evolution have suggested that self‐organization in landscapes can also cause internal complexity in the sedimentary record. In this contribution one particular case of self‐organization is explored in the Sabinal field study area, Spain, where several dynamic zones of sedimentation and incision are observed along the current river bed. Whether these zones can be caused by internal complexity was tested with landscape evolution model (LEM) LAPSUS (Landscape Process Modelling at Multi‐dimensions and Scales). During various 500 year simulations, zones of sedimentation appear to move upstream and downstream in eroding river channels (‘waves’). These waves are visualized and characterized for a range of model settings under constant external forcing, and the self‐organizing process behind their occurrence is analysed. Results indicate that this process is not necessarily related to simplifications in the model and is more generic than the process of bed‐armouring that has recently been recognized as a cause for complexity in LEM simulations. We conclude that autogenic sediment waves are the result of the spatial propagation in time of feedbacks in local transport limited (deposition) and detachment limited (erosion) conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号