首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Many novel techniques for reconstructing rainfall‐runoff processes require hydrometeorologic and geomorphologic information for modelling. However, certain information is not always measurable. In this paper, we employ a special recurrent neural network to reconstruct the rainfall‐runoff process by using collected rainfall data. In addition, we propose an indirect system identification to overcome the drawback of a traditional, time‐consuming trial‐and‐error search. The indirect system identification is an efficient method to recognize the structure of a recurrent neural network. The unit hydrograph can be derived directly from the weights of the network due to a state‐space form embedded in the recurrent neural network. This improves the link between the weights of the network and the physical concepts that most neural networks fail to connect. The case studies of 41 events from 1966 to 1997 have been implemented in Taiwan's Wu‐Tu watershed, where the runoff path‐lines are short and steep. Two recurrent neural networks and one state‐space model are utilized to simulate the rainfall‐runoff processes for comparison. The results are validated by four criteria: coefficient of efficiency; peak discharge error; time to peak arrival error; total discharge volume error. The resulting data from the recurrent neural network reveal that the neural network proposed herein is appropriate for hydrological systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Inflow forecasting is essential for decision making on reservoir operation during typhoons. In this paper, a radial basis function (RBF)‐based model with an information processor is proposed for more accurate forecasts of hourly reservoir inflow. Firstly, based on the multilayer perceptron neural (MLP) network, an information processor is developed to pre‐process the typhoon information (namely, typhoon characteristics and rainfall) and to produce forecasts of rainfall. The forecasted rainfall and the observed inflow are then used as input to the RBF‐based model, which is a nonlinear function approximator, to produce forecasts of hourly inflow. For parameter estimation of the RBF‐based model, the fully‐supervised learning algorithm is used. Actual applications of the proposed model are performed to yield 1‐ to 6‐h ahead forecasts of inflow. To assess the improvement due to the use of the typhoon information processor, models without the typhoon information processor are constructed and compared with the proposed model. The results show that the proposed model performs the best and is capable of providing improved forecasts of hourly inflow, especially for long lead‐time. In conclusion, the proposed model with a typhoon information processor can extract useful information from typhoon characteristics and rainfall, and consequently improve the forecasting performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In many engineering problems, such as flood warning systems, accurate multistep‐ahead prediction is critically important. The main purpose of this study was to derive an algorithm for two‐step‐ahead forecasting based on a real‐time recurrent learning (RTRL) neural network that has been demonstrated as best suited for real‐time application in various problems. To evaluate the properties of the developed two‐step‐ahead RTRL algorithm, we first compared its predictive ability with least‐square estimated autoregressive moving average with exogenous inputs (ARMAX) models on several synthetic time‐series. Our results demonstrate that the developed two‐step‐ahead RTRL network has efficient ability to learn and has comparable accuracy for time‐series prediction as the refitted ARMAX models. We then investigated the two‐step‐ahead RTRL network by using the rainfall–runoff data of the Da‐Chia River in Taiwan. The results show that the developed algorithm can be successfully applied with high accuracy for two‐step‐ahead real‐time stream‐flow forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Accurate water level forecasts are essential for flood warning. This study adopts a data‐driven approach based on the adaptive network–based fuzzy inference system (ANFIS) to forecast the daily water levels of the Lower Mekong River at Pakse, Lao People's Democratic Republic. ANFIS is a hybrid system combining fuzzy inference system and artificial neural networks. Five ANFIS models were developed to provide water level forecasts from 1 to 5 days ahead, respectively. The results show that although ANFIS forecasts of water levels up to three lead days satisfied the benchmark, four‐ and five‐lead‐day forecasts were only slightly better in performance compared with the currently adopted operational model. This limitation is imposed by the auto‐ and cross‐correlations of the water level time series. Output updating procedures based on the autoregressive (AR) and recursive AR (RAR) models were used to enhance ANFIS model outputs. The RAR model performed better than the AR model. In addition, a partial recursive procedure that reduced the number of recursive steps when applying the AR or the RAR model for multi‐step‐ahead error prediction was superior to the fully recursive procedure. The RAR‐based partial recursive updating procedure significantly improved three‐, four‐ and five‐lead‐day forecasts. Our study further shows that for long lead times, ANFIS model errors are dominated by lag time errors. Although the ANFIS model with the RAR‐based partial recursive updating procedure provided the best results, this method was able to reduce the lag time errors significantly for the falling limbs only. Improvements for the rising limbs were modest. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Various types of neural networks have been proposed in previous papers for applications in hydrological events. However, most of these applied neural networks are classified as static neural networks, which are based on batch processes that update action only after the whole training data set has been presented. The time variate characteristics in hydrological processes have not been modelled well. In this paper, we present an alternative approach using an artificial neural network, termed real‐time recurrent learning (RTRL) for stream‐flow forecasting. To define the properties of the RTRL algorithm, we first compare the predictive ability of RTRL with least‐square estimated autoregressive integrated moving average models on several synthetic time‐series. Our results demonstrate that the RTRL network has a learning capacity with high efficiency and is an adequate model for time‐series prediction. We also investigated the RTRL network by using the rainfall–runoff data of the Da‐Chia River in Taiwan. The results show that RTRL can be applied with high accuracy to the study of real‐time stream‐flow forecasting networks. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The major purpose of this study is to effectively construct artificial neural networks‐based multistep ahead flood forecasting by using hydrometeorological and numerical weather prediction (NWP) information. To achieve this goal, we first compare three mean areal precipitation forecasts: radar/NWP multisource‐derived forecasts (Pr), NWP precipitation forecasts (Pn), and improved precipitation forecasts (Pm) by merging Pr and Pn. The analysis shows that the accuracy of Pm is higher than that of Pr and Pn. The analysis also indicates that the NWP precipitation forecasts do provide relative effectiveness to the merging procedure, particularly for forecast lead time of 4–6 h. In sum, the merged products performed well and captured the main tendency of rainfall pattern. Subsequently, a recurrent neural network (RNN)‐based multistep ahead flood forecasting techniques is produced by feeding in the merged precipitation. The evaluation of 1–6‐h flood forecasting schemes strongly shows that the proposed hydrological model provides accurate and stable flood forecasts in comparison with a conventional case, and significantly improves the peak flow forecasts and the time‐lag problem. An important finding is the hydrologic model responses which do not seem to be sensitive to precipitation predictions in lead times of 1–3 h, whereas the runoff forecasts are highly dependent on predicted precipitation information for longer lead times (4–6 h). Overall, the results demonstrate that accurate and consistent multistep ahead flood forecasting can be obtained by integrating predicted precipitation information into ANNs modelling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Under a climate change, the physical factors that influence the rainfall regime are diverse and difficult to predict. The selection of skilful inputs for rainfall forecasting models is, therefore, more challenging. This paper combines wavelet transform and Frank copula function in a mutual information‐based input variable selection (IVS) for non‐linear rainfall forecasting models. The marginal probability density functions (PDFs) of a set of potential rainfall predictors and the rainfall series (predictand) were computed using a wavelet density estimator. The Frank copula function was applied to compute the joint PDF of the predictors and the predictand from their marginal PDFs. The relationship between the rainfall series and the potential predictors was assessed based on the mutual information computed from their marginal and joint PDFs. Finally, the minimum redundancy maximum relevance was used as an IVS stopping criterion to determine the number of skilful input variables. The proposed approach was applied to four stations of the Nigerien Sahel with rainfall series spanning the period 1950–2016 by considering 24 climate indices as potential predictors. Adaptive neuro‐fuzzy inference system, artificial neural networks, and random forest‐based forecast models were used to assess the skill of the proposed IVS method. The three forecasting models yielded satisfactory results, exhibiting a coefficient of determination between 0.52 and 0.69 and a mean absolute percentage error varying from 13.6% to 21%. The adaptive neuro‐fuzzy inference system performed better than the other models at all the stations. A comparison made with KDE‐based mutual information showed the advantage of the proposed wavelet–copula approach.  相似文献   

8.
In a water‐stressed region, such as the western United States, it is essential to have long lead times for streamflow forecasts used in reservoir operations and water resources management. Current water supply forecasts provide a 3‐month to 6‐month lead time, depending on the time of year. However, there is a growing demand from stakeholders to have forecasts that run lead times of 1 year or more. In this study, a data‐driven model, the support vector machine (SVM) based on the statistical learning theory, was used to predict annual streamflow volume with a 1‐year lead time. Annual average oceanic–atmospheric indices consisting of the Pacific decadal oscillation, North Atlantic oscillation (NAO), Atlantic multidecadal oscillation, El Niño southern oscillation (ENSO), and a new sea surface temperature (SST) data set for the ‘Hondo’ region for the period of 1906–2006 were used to generate annual streamflow volumes for multiple sites in the Gunnison River Basin and San Juan River Basin, both located in the Upper Colorado River Basin. Based on the performance measures, the model showed very good forecasts, and the forecasts were in good agreement with measured streamflow volumes. Inclusion of SST information from the Hondo region improved the model's forecasting ability; in addition, the combination of NAO and Hondo region SST data resulted in the best streamflow forecasts for a 1‐year lead time. The results of the SVM model were found to be better than the feed‐forward, back propagation artificial neural network and multiple linear regression. The results from this study have the potential of providing useful information for the planning and management of water resources within these basins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Many recent studies have successfully used neural networks for non‐linear rainfall‐runoff modelling. Due to fundamental limitation of linear structures, approaches employing linear models have been generally considered inferior to the neural network approaches in this area. However, the authors believe that with an appropriate extension, the concept of linear impulse responses can be a viable tool since it enables one to understand underlying dynamics of rainfall‐runoff processes. In this paper, the use of competing impulse responses for rainfall‐runoff analysis is proposed. The proposed method is based on the switch over of competing linear impulse‐responses, each of which satisfies the constraints of non‐negativity and uni‐modality. The computational analyses performed for the rainfall‐runoff data in the Seolma‐Chun experimental basin, Korea showed that the proposed method can yield promising results. Considering the basin characteristics as well as the results from this study, it may be concluded that three impulse responses are enough for rainfall‐runoff analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Growing interest in the use of artificial neural networks (ANNs) in rainfall‐runoff modelling has suggested certain issues that are still not addressed properly. One such concern is the use of network type, as theoretical studies on a multi‐layer perceptron (MLP) with a sigmoid transfer function enlightens certain limitations for its use. Alternatively, there is a strong belief in the general ANN user community that a radial basis function (RBF) network performs better than an MLP, as the former bases its nonlinearities on the training data set. This argument is not yet substantiated by applications in hydrology. This paper presents a comprehensive evaluation of the performance of MLP‐ and RBF‐type neural network models developed for rainfall‐runoff modelling of two Indian river basins. The performance of both the MLP and RBF network models were comprehensively evaluated in terms of their generalization properties, predicted hydrograph characteristics, and predictive uncertainty. The results of the study indicate that the choice of the network type certainly has an impact on the model prediction accuracy. The study suggests that both the networks have merits and limitations. For instance, the MLP requires a long trial‐and‐error procedure to fix the optimal number of hidden nodes, whereas for an RBF the structure of the network can be fixed using an appropriate training algorithm. However, a judgment on which is superior is not clearly possible from this study. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Nowadays, Flood Forecasting and Warning Systems (FFWSs) are known as the most inexpensive and efficient non‐structural measures for flood damage mitigation in the world. Benefit to cost of the FFWSs has been reported to be several times of other flood mitigation measures. Beside these advantages, uncertainty in flood predictions is a subject that may affect FFWS's reliability and the benefits of these systems. Determining the reliability of advanced flood warning systems based on the rainfall–runoff models is a challenge in assessment of the FFWS performance which is the subject of this study. In this paper, a stochastic methodology is proposed to provide the uncertainty band of the rainfall–runoff model and to calculate the probability of acceptable forecasts. The proposed method is based on Monte Carlo simulation and multivariate analysis of the predicted time and discharge error data sets. For this purpose, after the calibration of the rainfall–runoff model, the probability distributions of input calibration parameters and uncertainty band of the model are estimated through the Bayesian inference. Then, data sets of the time and discharge errors are calculated using the Monte Carlo simulation, and the probability of acceptable model forecasts is calculated by multivariate analysis of data using copula functions. The proposed approach was applied for a small watershed in Iran as a case study. The results showed using rainfall–runoff modeling based on real‐time precipitation is not enough to attain high performance for FFWSs in small watersheds, and it seems using weather forecasts as the inputs of rainfall–runoff models is essential to increase lead times and the reliability of FFWSs in small watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Weather radar has a potential to provide accurate short‐term (0–3 h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro‐meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)‐TN] and the empirically based scheme (ERF‐EM), and explores which one exhibits higher predictive skill. The ERF‐TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so‐called ERF‐EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ‘ground truth’ represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF‐EM achieves better performance than the ERF‐TN at 1‐h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2 h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Seasonal hydrological forecasts, or outlooks, can potentially provide water managers with estimates of river flows and water resources for a lead time of several months ahead. An experimental modelling tool for national hydrological outlooks has been developed which combines a hydrological model estimate of sub‐surface water storage across Britain with a range of seasonal rainfall forecasts to provide estimates of area‐wide hydrological conditions up to a few months ahead. The link is made between a deficit in sub‐surface water storage and a requirement for additional rainfall over subsequent months to enable sub‐surface water storage and river flow to return to mean monthly values. The new scheme is assessed over a recent period which includes the termination of the drought that affected much of Britain in the first few months of 2012. An illustration is provided of its use to obtain return‐period estimates of the ‘rainfall required’ to ease drought conditions; these are well in excess of 200 years for several regions of the country, for termination within a month of 1 April 2012, and still exceed 40 years for termination within three months. National maps of sub‐surface water storage anomaly show for the first time the current spatial variability of drought severity. They can also be used to provide an indication of how a drought situation might develop in the next few months given a range of possible future rainfall scenarios. © 2013 CEH/Crown and John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The neuro‐controller training algorithm based on cost function is applied to a multi‐degree‐of‐freedom system; and a sensitivity evaluation algorithm replacing the emulator neural network is proposed. In conventional methods, the emulator neural network is used to evaluate the sensitivity of structural response to the control signal. To use the emulator, it should be trained to predict the dynamic response of the structure. Much of the time is usually spent on training of the emulator. In the proposed algorithm, however, it takes only one sampling time to obtain the sensitivity. Therefore, training time for the emulator is eliminated. As a result, only one neural network is used for the neuro‐control system. In the numerical example, the three‐storey building structure with linear and non‐linear stiffness is controlled by the trained neural network. The actuator dynamics and control time delay are considered in the simulation. Numerical examples show that the proposed control algorithm is valid in structural control. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Although artificial neural networks (ANNs) have been applied in rainfall runoff modelling for many years, there are still many important issues unsolved that have prevented this powerful non‐linear tool from wide applications in operational flood forecasting activities. This paper describes three ANN configurations and it is found that a dedicated ANN for each lead‐time step has the best performance and a multiple output form has the worst result. The most popular form with multiple inputs and single output has the average performance. In comparison with a linear transfer function (TF) model, it is found that ANN models are uncompetitive against the TF model in short‐range predictions and should not be used in operational flood forecasting owing to their complicated calibration process. For longer range predictions, ANN models have an improved chance to perform better than the TF model; however, this is highly dependent on the training data arrangement and there are undesirable uncertainties involved, as demonstrated by bootstrap analysis in the study. To tackle the uncertainty issue, two novel approaches are proposed: distance analysis and response analysis. Instead of discarding the training data after the model's calibration, the data should be retained as an integral part of the model during its prediction stage and the uncertainty for each prediction could be judged in real time by measuring the distances against the training data. The response analysis is based on an extension of the traditional unit hydrograph concept and has a very useful potential to reveal the hydrological characteristics of ANN models, hence improving user confidence in using them in real time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper analyses the skills of fuzzy computing based rainfall–runoff model in real time flood forecasting. The potential of fuzzy computing has been demonstrated by developing a model for forecasting the river flow of Narmada basin in India. This work has demonstrated that fuzzy models can take advantage of their capability to simulate the unknown relationships between a set of relevant hydrological data such as rainfall and river flow. Many combinations of input variables were presented to the model with varying structures as a sensitivity study to verify the conclusions about the coherence between precipitation, upstream runoff and total watershed runoff. The most appropriate set of input variables was determined, and the study suggests that the river flow of Narmada behaves more like an autoregressive process. As the precipitation is weighted only a little by the model, the last time‐steps of measured runoff are dominating the forecast. Thus a forecast based on expected rainfall becomes very inaccurate. Although good results for one‐step‐ahead forecasts are received, the accuracy deteriorates as the lead time increases. Using the one‐step‐ahead forecast model recursively to predict flows at higher lead time, however, produces better results as opposed to different independent fuzzy models to forecast flows at various lead times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In the work discussed in this paper we considered total ozone time series over Kolkata (22°34′10.92″N, 88°22′10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.  相似文献   

19.
20.
A methodology is proposed for constructing a flood forecast model using the adaptive neuro‐fuzzy inference system (ANFIS). This is based on a self‐organizing rule‐base generator, a feedforward network, and fuzzy control arithmetic. Given the rainfall‐runoff patterns, ANFIS could systematically and effectively construct flood forecast models. The precipitation and flow data sets of the Choshui River in central Taiwan are analysed to identify the useful input variables and then the forecasting model can be self‐constructed through ANFIS. The analysis results suggest that the persistent effect and upstream flow information are the key effects for modelling the flood forecast, and the watershed's average rainfall provides further information and enhances the accuracy of the model performance. For the purpose of comparison, the commonly used back‐propagation neural network (BPNN) is also examined. The forecast results demonstrate that ANFIS is superior to the BPNN, and ANFIS can effectively and reliably construct an accurate flood forecast model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号