首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Solute transport experiments using a non-reactive tracer were conducted on short, undisturbed, saturated columns of a sandy loam soil. All columns, 20 cm in diameter and 20 cm long, were collected along a transect of 35 m. Most of the soil columns had pre-existing macropores. The columns were leached at a steady flow-rate under ponding conditions. The resulting breakthrough curves (BTCs) showed a large heterogeneity. Several of the BTCs displayed early breakthrough and long tailing. All the data were interpreted in terms of dimensional time moments, the classical convection-dispersion equation (CDE) and the mobile-immobile transport model (MIM). Experimental time moments were found to vary significantly among the different BTCs. Analysis of the time moments also revealed that the variance of the field-scale BTC was several times larger than the average of the local-scale variance. The pore water velocity v and dispersion coefficient D were obtained by fitting the CDE to the local-scale BTCs, resulting in an average dispersivity of 7·4 cm. Frequency distributions for the CDE parameters v and D were equally well described by a normal or log-normal probability density function (pdf). When a log-normal pdf for D is considered, the variance of the loge transformed D values (σln D2) was found to be 2·1. For the MIM model, two additional parameters were fitted: the fraction of mobile water, θm/θ, and the first-order mass transfer coefficient, α. The MIM was more successful in describing the data than the CDE transport model. For the MIM model, the average dispersivity was about 2 cm. The MIM parameters v, D and θm/θ were best described by a log-normal pdf rather than a normal pdf. Only the parameter α was better described by a normal pdf. Mobile water fractions, θm/θ ranged from 0·01 to 0·98, with a mean of 0·43 (based on a log-normal pdf). When the CDE and MIM were applied to the data, the fitted pore water velocities, v, compared favourably with the effective pore water velocities, veff, obtained from moment analysis.  相似文献   

2.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau   总被引:9,自引:0,他引:9  
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.  相似文献   

4.
Spatio‐temporal variations in nitrogen and phosphorus concentrations in groundwater were analysed and related to the variations in hydrological conditions, vegetation type and substrate in an alluvial ecosystem. This study was conducted in the Illwald forest in the Rhine Plain (eastern France) to assess the removal of nutrients from groundwater in a regularly flooded area. We compared both forest and meadow ecosystems on clayey‐silty soils with an anoxic horizon (pseudogley) at 1·5–2 m depth (eutric gley soil) and a forest ecosystem on a clayey‐silty fluviosoil rich in organic matter with a gley at 0·5 m depth (calcaric gley soil). Piezometers were used to measure the nutrient concentrations in the groundwater at 2 m depth in the root layer and at 4·5 m depth, below the root layer. Lower concentrations of nitrate and phosphate in groundwater were observed under forest than under meadow, which could be explained by more efficient plant uptake by woody species than herbaceous plants. Thus NO3‐N inputs by river floods were reduced by 73% in the shallow groundwater of the forested ecosystem, and only by 37% in the meadow. Compared with the superficial groundwater layer, the lowest level of nitrate nitrogen (NO3‐N) and the highest level of ammonium nitrogen (NH4‐N) were measured in the deep layer (under the gley horizon at 2·5 m depth), which suggests that the reducing potential of the anoxic horizon in the gley soils contributes to the reduction of nitrate. Nitrate concentrations were higher in the groundwater of the parcel rich in organic matter than in the one poorer in organic matter. Phosphate (PO4‐P) concentrations in both shallow and deep groundwater are less than 62 to 76% of those found in surface water which can be related to the retention capacity of the clay colloids of these soils. Moreover, the temporal variations in nutrient concentrations in groundwater are directly related to variations in groundwater level during an annual hydrological cycle. Our results suggest that variations in groundwater level regulate spatio‐temporal variations in nutrient concentrations in groundwater as a result of the oxidation–reduction status of soil, which creates favourable or unfavourable conditions for nutrient bioavailability. The hydrological variations are much more important than those concerning substrate and type of vegetation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Soil water repellency may be characterized in terms of the delayed infiltration time of a water droplet resting on the soil surface, which is, water drop penetration time (WDPT), or repellency persistence. Such repellency persistence varies nonlinearly with soil water content (θg), although no models have been proposed to reproduce the variation of WDPT with θg in soils. Dynamic factor analysis (DFA) is used to identify two common patterns of unexplained variability in a scattered dataset of WDPT versus θg measurements. A four‐parameter lognormal distribution was fitted to both common patterns obtained by DFA, and these were combined additively in a weighted multiple linear bimodal model. We show how such an empirical model is capable of reproducing a large variety of WDPT versus θg curve shapes (N = 80) both within a wide range of measured WDPTs (0–17 000 s) and for samples with organic matter content ranging from 21·7 to 80·6 g (100 g)?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The ability to predict vegetation cover effects on thermal/water regimes can enhance our understanding of canopy controls on evapotranspiration. The Simultaneous Heat and Water (SHAW) model is a detailed process model of heat and water movement in a snow–residue–soil system. This paper describes provisions added to the SHAW model for vegetation cover and simulation of heat and water transfer through the soil–plant–air continuum. The model was applied to four full years (May 2003–April 2007) of data collected on sparse grassland at Nalaikh in north‐eastern Mongolia. Simulated soil temperature and radiation components agreed reasonably well with measured values. The absolute differences between simulated and measured soil temperatures were larger at both the surface layer and deeper layer, but relatively smaller in the layer from 0·8 to 2·4 m. Radiation components were mimicked by the SHAW model with model efficiency (ME) reaching 0·93–0·72. Latent and sensible heat fluxes were simulated well with MEs of 0·93 and 0·87, respectively. The vegetation control on evapotranspiration was investigated by sensitivity experiments of model performance with changing leaf area index (LAI) values but constant of other variables. The results suggest that annual evapotranspiration ranged from 16 to ? 22% in response to extremes of doubled and zero LAI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Observations of soil moisture and salt content were conducted from May to August at Neleger station in eastern Siberia. Seasonal changes of salt and soil moisture distribution in the active layer of larch forest (undisturbed) and a thermokarst depression known as an alas (disturbed) were studied. Electric conductivity ECe of the intact forest revealed higher concentrations that increased with depth from the soil surface into the active layer and the underlying permafrost: 1 mS cm?1 at 1·1 m, to 2·6 mS cm?1 at 160 cm depth in the permafrost. However, a maximum value of 5·4 mS cm?1 at 0·6 m depth was found in the dry area of the alas. The concentration of ions, especially Na+, Mg2+, Ca2+, SO42? and HCO3? in the upper layers of this long‐term disturbed site, indicates the upward movement of ions together with water. A higher concentration of solutes was found in profiles with deeper seasonal thawing. The accumulation of salts in the alas occurs from spring through into the growing season. The low concentration of salt in the surface soil layers appears to be linked to leaching of salts by rainfall. There are substantial differences between water content and electric conductivity of soil in the forest and alas. Modern salinization of the active layer in the alas is epigenetic, and it happens in summer as a result of spring water collection and high summer evaporation; the gradual salt accumulation in the alas in comparison with the forest is controlled by the annual balance of water and salts in the active layer. Present climatic trends point to continuous permafrost degradation in eastern Siberia increasing the risk of surface salinization, which has already contributed to changing the landscape by hindering the growth of forest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The water retention curve (θ(ψ)), which defines the relationship between soil volumetric water content (θ) and matric potential (ψ), is of paramount importance in characterizing the hydraulic behaviour of soils. However, few methods are so far available for estimating θ(ψ) in undisturbed soil samples. We present a new design of TDR‐pressure cell (TDR‐Cell) for estimating θ(ψ) in undisturbed soil samples. The TDR‐Cell consists of a 50‐mm‐long and 50‐mm internal diameter stainless steel cylinder (which constitutes the outer frame of a coaxial line) attached to a porous ceramic disc and closed at the ends with two aluminium lids. A 49‐mm‐long and 3‐mm‐diameter stainless steel rod, which runs longitudinally through the centre of the cylinder, constitutes the inner rod of a coaxial TDR probe. The TDR‐Cell was used to determine the θ(ψ) curves of a packed sand and seven undisturbed soil samples from three profiles of agricultural soils. These θ(ψ) curves were subsequently compared to those obtained from the corresponding 2‐mm sieved soils using the pressure plate method. Measurements of bulk electrical conductivity, σa, as a function of the water content, σa(θ), of the undisturbed soil samples were also performed. An excellent correlation (R2 = 0·988) was found between the θ values measured by TDR on the different undisturbed soils and the corresponding θ obtained from the soil gravimetric water content. A typical bimodal θ(ψ) function was found for most of the undisturbed soil samples. Comparison between the θ(ψ) curves measured with the TDR‐Cell and those obtained from the 2‐mm sieved soils showed that the pressure plate method overestimates θ at low ψ values. The σa(θ) relationship was well described by a simple power expression (R2 > 0·95), in which the power factor, defined as tortuosity, ranged between 1·18 and 3·75. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In most regions of the world overgrazing plays a major role in land degradation and thus creates a major threat to natural ecosystems. Several feedbacks exist between overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better understood. In this study of a sub‐humid overgrazed rangeland in South Africa, the main objective was to evaluate the impact of grass cover on soil infiltration by water and soil detachment. Artificial rains of 30 and 60 mm h?1 were applied for 30 min on 1 m2 micro‐plots showing similar sandy‐loam Acrisols with different proportions of soil surface coverage by grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping A horizon; F: 0% with an outcropping B horizon) to evaluate pre‐runoff rainfall (Pr), steady state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the class of vegetal cover and the rainfall intensity, with the exception of two plots probably affected by biological activity, I decreased regularly to a steady rate <2 mm h?1 after 15 min rain. There was no significant correlation between I and Pr with vegetal cover. The average SC computed from the two rains increased from 0·16 g L?1 (class A) to 48·5 g L?1 (class F) while SL was varied between 4 g m?2 h?1 for A and 1883 g m?2 h?1 for F. SL increased significantly with decreasing vegetal cover with an exponential increase while the removal of the A horizon increased SC and SL by a factor of 4. The results support the belief that soil vegetation cover and overgrazing plays a major role in soil infiltration by water but also suggest that the interrill erosion process is self‐increasing. Abandoned cultivated lands and animal preferred pathways are more vulnerable to erosive processes than simply overgrazed rangelands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Knowledge of seasonal variation in soil structural and related properties is important for the determination of critical periods during which soil is susceptible to accelerated erosion and other degradative processes. The purpose of this research was to evaluate the magnitude of seasonal variations in selected soil and deposited sediment properties in relation to soil erodibility for a Miamian silt-loam soil (Typic Hapludalf) in central Ohio. Erosion plots (USLE-type) were established on a 4·5% slope and maintained under bare, ploughed conditions from 1988 to 1991. Particle size distribution, bulk density(ρb), percentage water stable aggregates (WSA), soil organic carbon (SOC), and total soil nitrogen (TSN) of both soil and sediment samples were monitored between Autumn 1989 and Spring 1991. The soil and sediment particle size distributions followed no clear seasonal trends. Soil ρb increased following tillage (1·20 Mg m−3) and was highest (1·45 Mg m−3) during the autumn owing to soil slumping and consolidation upon drying. Low winter and spring values of ρb and %WSA (20–50% lower than in autumn) were attributed to excessive wetness and freeze–thaw effects. Both SOC and soil TSN contents progressively declined (from 2·18 to 1·79% and 1·97 to 1·75 g kg−1, respectively) after ploughing owing to maintenance of plots under bare, fallow conditions. Spring highs and autumn lows of sediment SOC (3·12 vs. 2·44%) and TSN (2·70 vs. 1·96 g kg−1) contents were a result of the combined effects of soil microbial activity and rainfall erosivity. Soil properties such as bulk density, SOC and WSA, which vary seasonally, can potentially serve as predictors of seasonal soil erodibility, which, in turn, could improve the predictive capacity of soil erosion prediction models. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   

15.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Active layer thickness (ALT) is critical to the understanding of the surface energy balance, hydrological cycles, plant growth, and cold region engineering projects in permafrost regions. The temperature at the bottom of the active layer, a boundary layer between the equilibrium thermal state (in permafrost below) and transient thermal state (in the atmosphere and surface canopies above), is an important parameter to reflect the existence and thermal stability of permafrost. In this study, the Geophysical Institute Permafrost Model (GIPL) was used to model the spatial distribution of and changes in ALT and soil temperature in the Source Area of the Yellow River (SAYR), where continuous, discontinuous, and sporadic permafrost coexists with seasonally frozen ground. Monthly air temperatures downscaled from the CRU TS3.0 datasets, monthly snow depth derived from the passive microwave remote-sensing data SMMR and SSM/I, and vegetation patterns and soil properties at scale of 1:1000000 were used as input data after modified with GIS techniques. The model validation was carried out carefully with ALT in the SAYR has significantly increased from 1.8 m in 1980 to 2.4 m in 2006 at an average rate of 2.2 cm yr?1. The mean annual temperature at the bottom of the active layer, or temperature at the top of permafrost (TTOP) rose substantially from ?1.1°C in 1980 to ?0.6°C in 2006 at an average rate of 0.018°C yr?1. The increasing rate of the ALT and TTOP has accelerated since 2000. Regional warming and degradation of permafrost has also occurred, and the changes in the areal extent of regions with a sub-zero TTOP shrank from 2.4×104 to 2.2×104 km2 at an average rate of 74 km2 yr?1. Changes of ALT and temperature have adversely affected the environmental stability in the SAYR.  相似文献   

18.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号