首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In situ measurement of grain‐scale fluvial morphology is important for studies on grain roughness, sediment transport and the interactions between animals and the geomorphology, topics relevant to many river practitioners. Close‐range digital photogrammetry (CRDP) and terrestrial laser scanning (TLS) are the two most common techniques to obtain high‐resolution digital elevation models (DEMs) from fluvial surfaces. However, field application of topography remote sensing at the grain scale is presently hindered mainly by the tedious workflow challenges that one needs to overcome to obtain high‐accuracy elevation data. A recommended approach for CRDP to collect high‐resolution and high‐accuracy DEMs has been developed for gravel‐bed flume studies. The present paper investigates the deployment of the laboratory technique on three exposed gravel bars in a natural river environment. In contrast to other approaches, having the calibration carried out in the laboratory removes the need for independently surveyed ground‐control targets, and makes for an efficient and effective data collection in the field. Optimization of the gravel‐bed imagery helps DEM collection, without being impacted by variable lighting conditions. The benefit of a light‐weight three‐dimensional printed gravel‐bed model for DEM quality assessment is shown, and confirms the reliability of grain roughness data measured with CRDP. Imagery and DEM analysis evidences sedimentological contrasts between gravel bars within the reach. The analysis of the surface elevations shows the effect variable grain‐size and sediment sorting have on the surface roughness. By plotting the two‐dimensional structure functions and surface slopes and aspects we identify different grain arrangements and surface structures. The calculation of the inclination index allows determining the surface‐forming flow direction(s). We show that progress in topography remote sensing is important to extend our knowledge on fluvial morphology processes at the grain scale, and how a technique customized for use by fluvial geomorphologists in the field benefits this progress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

8.
The assumption of the equilibrium state of gravel surfaces in flume experiments under feeding or recirculating conditions is generally justified by three equilibrium criteria based on sediment transport, slopes, and bed features. When these parameters become stable, an experiment is expected to reach equilibrium. This equilibrium state, however, is based on a one‐dimensional model, the Exner equation, which may not truly reflect the equilibrium state of the system considering the complex flow and sediment processes. In this paper, the evolutionary process of a gravel surface is investigated based on a large‐scale recirculating flume experiment. The performances of the three equilibrium criteria are evaluated first, and then the evolution of the bed morphology is studied. The key findings include the following: (1) the sediment transport rate, slopes of water and bed surfaces, and one‐dimensional morphological features reach equilibrium roughly simultaneously; (2) two‐dimensional morphology continually evolves after these characteristics reach equilibrium, which is confirmed by the characteristics of the sediment transport process; and (3) the results from a numerical simulation suggest that a much longer time is required to reach an equilibrium state. Our results suggest that sufficient experimental time is required to investigate the equilibrium morphological characteristics of gravel surfaces, which is much longer than the equilibrium time reflected by the one‐dimensional equilibrium criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
To further develop prediction of the range of morphological adjustments associated with sediment pulses in bar‐pool channels, we analyze channel bed topographic data collected prior to and following the removal of two dams in Oregon: Marmot Dam on the Sandy River and Brownsville Dam on the Calapooia River. We hypothesize that, in gravel‐bed, bar‐pool channels, the response of bed relief to sand and gravel sediment pulses is a function of initial relief and pulse magnitude. Modest increases in sediment supply to initially low‐relief, sediment‐poor cross‐sections will increase bed relief and variance of bed relief via bar deposition. Modest increases in sediment supply to initially high‐relief cross‐sections, characteristic of alternate bar morphology, will result in decreased bed relief and variance of relief via deposition in bar‐adjacent pools. These hypothesized adjustments are measured in terms of bed relief, which we define as the difference in elevation between the pool‐bottom and bar‐top. We evaluate how relief varies with sediment thickness, where both relief and mean sediment thickness at a cross‐section are normalized by the 90th percentile of observed relief values within a reach prior to a sediment pulse. Field measurements generally supported the stated hypotheses, demonstrating how introduction of a sediment pulse to low‐relief reaches can increase mean and variance of relief, while introduction to high‐relief reaches can decrease the mean and variance of bed relief, at least temporarily. In general, at both sites, the degree of impact increased with the thickness of sediment delivered to the cross‐section. Results thus suggest that the analysis is a useful step for understanding the morphological effects of sediment pulses introduced to gravel‐bed, bar‐pool channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The operational time distribution (OTD) defines the time for bed‐load sediment spent in motion, which is needed to characterize the random nature of sediment transport. This study explores the influence of bed clusters and size gradation on OTD for non‐uniform bed‐loads. First, both static and mobile bed armouring experiments were conducted in laboratorial flumes to monitor the transport of mixed sand/gravel sediments. Only in the mobile armouring experiment did apparent bed clusters develop, because of stable feeding and a longer transport period. Second, a generalized subordinated advection (GSA) model was applied to quantify the observed dynamics of tracer particles. Results show that for the static armour layer (without sediment feed), the best‐fit OTD assigns more weight to the large displacement of small particles, likely because of the size‐selective entrainment process. The capacity coefficient in the GSA model, which affects the width of the OTD, is space dependent only for small particles whose dynamics can be significantly affected by larger particles and whose distribution is more likely to be space dependent in a mixed sand and gravel system. However, the OTD for the mobile armour layer (with sediment recirculation) exhibited longer tails for larger particles. This is because the trailing edge of larger particles is more resistant to erosion, and their leading front may not be easily trapped by self‐organized bed clusters. The strong interaction between particle–bed may cause the capacity coefficient to be space‐dependent for bed‐load transport along mobile armour layers. Therefore, the combined laboratory experiments and stochastic model analysis show that the OTD may be affected more by particle–bed interactions (such as clusters) than by particle–particle interactions (e.g. hiding and exposing), and that the GSA model can quantify mixed‐size sand/gravel transport along river beds within either static or mobile armour layers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Monitoring sediment transport in morphologically complex and labile channels remains a difficult task, even at the laboratory scale. To address this challenge, a fully automated imagery technique for continuously mapping the spatial and temporal variability of bedload transport is proposed. This method uses differentiated time‐lapse imagery taken from a fixed camera to detect bed variations induced by grain displacement. The technique is not based on tracking the individual particles; rather, it evaluates macroscopic colour changes within a region that contains several grains, which depend on the occurrence and intensity of the bedload transport. Image‐derived data were compared with the sediment flux measured during four flume experiments, and produced good correspondence. The method provides continuous tracking of the location of the transporting channels, and enables estimation of local variations in the magnitude of the bedload flux. Moreover, the spatial extent of the monitoring area offers an unprecedented opportunity to aggregate spatially dense and continuous data at the reach scale, as needed to properly capture the full range of variability of morphologically complex and rapidly evolving gravel‐bed rivers. Despite being limited to laboratory‐scale physical experiments, the method provides useful data to investigate fundamental morphodynamic processes such as bar migration, bank erosion, anabranches opening/closure, and the associate spatial and temporal scales. Further, the data obtained have the potential to enhance numerical model calibration and improve our understanding of the complex dynamics of real‐world settings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This study investigates trends in bed surface and substrate grain sizes in relation to reach‐scale hydraulics using data from more than 100 gravel‐bed stream reaches in Colorado and Utah. Collocated measurements of surface and substrate sediment, bankfull channel geometry and channel slope are used to examine relations between reach‐average shear stress and bed sediment grain size. Slopes at the study sites range from 0·0003 to 0·07; bankfull depths range from 0·2 to 5 m and bankfull widths range from 2 to 200 m. The data show that there is much less variation in the median grain size of the substrate, D50s, than there is in the median grain size of the surface, D50; the ratio of D50 to D50s thus decreases from about four in headwater reaches with high shear stress to less than two in downstream reaches with low shear stress. Similar trends are observed in an independent data set obtained from measurements in gravel‐bed streams in Idaho. A conceptual quantitative model is developed on the basis of these observations to track differences in bed load transport through an idealized stream system. The results of the transport model suggest that downstream trends in total bed load flux may vary appreciably, depending on the assumed relation between surface and substrate grain sizes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Acquiring high resolution topographic data of natural gravel surfaces is technically demanding in locations where the bed is not exposed at low water stages. Often the most geomorphologically active surfaces are permanently submerged. Gravel beds are spatially variable and measurement of their detailed structure and particle sizes is essential for understanding the interaction of bed roughness with near‐bed flow hydraulics, sediment entrainment, transport and deposition processes, as well as providing insights into the ecological responses to these processes. This paper presents patch‐scale laboratory and field experiments to demonstrate that through‐water terrestrial laser scanning (TLS) has the potential to provide high resolution digital elevation models of submerged gravel beds with enough detail to depict individual grains and small‐scale forms. The resulting point cloud data requires correction for refraction before registration. Preliminary validation shows that patch‐scale TLS through 200 mm of water introduces a mean error of less than 5 mm under ideal conditions. Point precision is not adversely affected by the water column. The resulting DEMs can be embedded seamlessly within larger sub‐aerial reach‐scale surveys and can be acquired alongside flow measurements to examine the effects of three‐dimensional surface geometry on turbulent flow fields and their interaction with instream ecology dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A six‐year monitoring programme characterized the migration/dispersion patterns of sediment slugs generated following typhoon‐induced disturbances in 1993 and 1997 along a single‐thread gravel‐bed stream, Oyabu Creek, on Kyushu Island, Japan. This laterally con?ned creek comprises rif?e–pool sequences with intervening bedrock outcrops. The passage of sediment pulses associated with sediment slug processes re?ected, and was controlled by, the rif?e–pool structures which provided channel bed roughness, the volume of sediment stored along valley ?oors, and the distribution of bedrock outcrops. Changes to bed material size following major sediment inputs during the disturbance events also exerted an in?uence on subsequent sediment slug processes. The sequence of rainfall events, together with changes to channel bed structure, induced different phases in the sediment slug processes. The capacity of a reach to store or trap sediment, as recorded by the longitudinal structure of the channel, varied during these differing phases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
A reliable estimation of sediment transport in gravel‐bed streams is important for various practical engineering and biological studies (e.g., channel stability design, bed degradation/aggradation, restoration of spawning habitat). In the present work, we report original laboratory experiments investigating the transport of gravel particles at low bed shear stresses. The laboratory tests were conducted under unsteady flow conditions inducing low bed shear stresses, with detailed monitoring of the bed topography using a laser scanner. Effects of bed surface arrangements were documented by testing loose and packed bed configurations. Effects of fine sediments were examined by testing beds with sand, artificial fine sand or cohesive silt infiltrated in the gravel matrix. Analysis of the experimental data revealed that the transport of gravel particles depends upon the bed arrangement, the bed material properties (e.g., size and shape, consolidation index, permeability) and the concentration of fine sediments within the surface layer of moving grains. This concentration is directly related to the distribution of fine particles within the gravel matrix (i.e., bottom‐up infiltration or bridging) and their transport mode (i.e., bedload or suspended load). Compared to loose beds, the mobility of gravel is reduced for packed beds and for beds clogged from the bottom up with cohesive fine sediments; in both cases, the bed shear stress for gravel entrainment increases by about 12%. On the other hand, the mobility of gravel increases significantly (bed shear stress for particle motion decreasing up to 40%) for beds clogged at the surface by non‐cohesive sand particles. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Grain‐size distributions of bed material sediment in large alluvial rivers are required in various scientific and management applications, but characterizing gravel beds in navigable rivers is hampered by difficulties in sediment extraction. The newly developed and preliminarily tested sampler reported here can extract sediment from a range of riverbeds. The 36 × 23 × 28 cm stainless steel toothed sampler is deployed from and dragged downstream by the weight of a jet boat, and it improves upon previous samplers that are unable to penetrate gravel bed surfaces, have small apertures, and/or cannot retain fine sediment. The presented sampler was used to extract 167 bed material sediment samples of up to 16 kg (dry weight) with an average sample size of ~6 kg from 67 cross‐sections spanning 160 river kilometres along the Sacramento River. It was also tested at three sites on a subaerial bar to compare surface, subsurface, and sampler distributions. Sampler penetration is ~5 cm. The device collects individual samples that satisfy the criterion for bed material sediment whereby the largest particle comprises no more than 5% of the total sample mass in gravel and sand beds, except where the degree of surface armouring is large (e.g. armor ratios >> 2) and where more than 10% of bed material sediment is composed of grains larger than 64 mm. When aggregated samples exceed 15 kg, all satisfy the criterion whereby the largest particle comprises no more than 1% of the total sample mass. Samples closely resemble surface size distributions, except where armouring is strong. The sampler should be subject to more rigorous field testing, but many of its current limitations are expected to become negligible with the advent a larger, heavier version of the sampling device. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This study investigates the relation between channel changes, as mapped from aerial photography, and bed‐material transport along Chilliwack River, British Columbia. Detailed mapping of channel features was completed for five dates between 1952 and 1991 using an analytical stereoplotter. Data were transferred to a geographic information system (GIS) to analyse changes during four consecutive periods. Erosion and deposition volumes along channel reaches were estimated by multiplying measured areal changes by the bed‐material depth along each reach. Bed‐material transport rates are related to morphologic changes using a sediment budget approach. The highest rate of transport for the four study periods is estimated as 55 000 ± 10 000 m3 a−1 between 1983 and 1991. These rates are compared with estimates from short‐term (1–2 year) changes along the lower reach to investigate variations in sediment flux that may otherwise remain undetected. Significant morphologic change occurs roughly once every 5 years when flows are large enough to erode and entrain large volumes of bed material stored within the contemporary floodplain. In the absence of large floods, transport rates decline and vegetation begins to establish new floodplain. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
A series of laboratory flume experiments under conditions of sediment starvation (zero sediment feeding) and recirculation were conducted in order to identify the temporal evolution and surface properties of static and mobile armour layers. The experiments were carried out in an 8 m long flume using a bimodal grain‐size mixture (D50 = 6·2 mm) and a range of shear stresses ranging from 4·0 to 8·6 N m–2. The results confirm that a static armour layer is coarser than a mobile one, and that the grain size of a mobile armour layer is rather insensitive to changes in the imposed flow strength. An analysis of laser scan bed surveys revealed the highly structured and imbricated nature of the static armour layer. Under these conditions the vertical roughness length scale of the bed diminished and it became topographically less complex at higher forming discharges. The topography of mobile armour layers created by rising discharges differed. They exhibited a greater roughness length scale and were less organized, despite the fact that the grain size of the surface material maintained an approximately constant value during recirculation. Also, the mobile armour tended to create larger cluster structures than static armour layers when formed by higher discharges. These differences were mainly due to the transport of the coarser fraction of bed sediments, which diminished to zero over the static armour because of being hidden within the bed, whereas in the mobile armour the coarser particles protruded into the flow and were actively transported, increasing the vertical roughness length scale. Overall, the results show that an examination of the grain size characteristics of armour layers cannot be used to infer sediment mobility and bed roughness. Detailed elevation models of exposed surfaces of gravel‐bed rivers are required to provide critical insight on the sediment availability and sedimentation processes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号