首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5348篇
  免费   206篇
  国内免费   44篇
测绘学   134篇
大气科学   432篇
地球物理   1162篇
地质学   1664篇
海洋学   532篇
天文学   1069篇
综合类   14篇
自然地理   591篇
  2021年   63篇
  2020年   67篇
  2019年   85篇
  2018年   100篇
  2017年   92篇
  2016年   140篇
  2015年   127篇
  2014年   140篇
  2013年   311篇
  2012年   198篇
  2011年   286篇
  2010年   208篇
  2009年   292篇
  2008年   246篇
  2007年   262篇
  2006年   228篇
  2005年   202篇
  2004年   193篇
  2003年   178篇
  2002年   166篇
  2001年   129篇
  2000年   124篇
  1999年   106篇
  1998年   108篇
  1997年   67篇
  1996年   79篇
  1995年   68篇
  1994年   75篇
  1993年   65篇
  1992年   59篇
  1991年   58篇
  1990年   54篇
  1989年   54篇
  1988年   49篇
  1987年   68篇
  1986年   50篇
  1985年   79篇
  1984年   81篇
  1983年   68篇
  1982年   72篇
  1981年   69篇
  1980年   61篇
  1979年   46篇
  1978年   35篇
  1977年   44篇
  1976年   31篇
  1975年   37篇
  1974年   18篇
  1973年   22篇
  1972年   21篇
排序方式: 共有5598条查询结果,搜索用时 15 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
3.
To the north of Hanoi, about a day's drive by car, lies Ha Giang Province, the northernmost region of Vietnam. Ha Giang is remote from the hustle and bustle of daily life, and beyond its eponymous provincial capital towards the border with China, mountains rise quickly to Quan Ba, ‘Heaven's Gate’. The mountains form an uneven landscape of steep‐sided karst rising from deep river‐cut gorges and form a formidable barrier on the northern frontier of Vietnam. Beyond ‘Heaven's Gate’ lies the little travelled region of Dong Van, with its majestic mountains of Palaeozoic strata rising precipitously to the sky. Here, a century ago, the French geologists Henri Mansuy and Jacques Deprat documented early finds of fossils from lower Palaeozoic strata on the border with China.  相似文献   
4.
5.
The Karoo Basin covers much of South Africa and is an area of prospective shale gas exploration, with the Whitehill Formation the target shale unit. However, the sedimentary succession, including the Whitehill, has been intruded by a series of sills and dykes associated with the Karoo Large Igneous Province (~183 Ma), which are expected to have modified the thermal history of the basin dramatically. Here, we investigate a secondary effect of these intrusions: a series of hydrothermal vent complexes, or breccia pipes, focusing on using O, H, and C isotopes to constrain the origin and evolution of fluids produced during the intrusion of basaltic sills. A cluster of breccia pipes have been eroded down to the level of the Ecca Group at Luiperdskop on the western edge of the Karoo basin; a small isolated pipe of similar appearance crops out 13 km to the east. The Luiperdskop pipes are underlain by a Karoo dolerite sill that is assumed to provide the heat driving fluidization. The pipes consist of fine‐grained matrix and about 8% clasts, on average, of mostly sedimentary material; occasional large rafts of quartzite and dolerite are also present. The presence of clasts apparently from the Dwyka Group is consistent with the depth of formation of the pipes being at, or near, the base of the Karoo Supergroup, between 400 and 850 m below present surface. The presence of chlorite as the dominant hydrous mineral is consistent with an emplacement temperature between 300 and 350°C. The major and trace element, and O‐ and H‐isotope composition of the Tankwa breccias is homogenous, consistent with them being derived from the same source. The δ18O values (vsVSMOW) of the breccias are relatively uniform (7.1‰–8.7‰), and are similar to that of the country rock shale, and both are lower than expected for shale. The water content of the breccia is between 2.7 and 3.1 wt.% and the δD values range from ?109‰ to ?144‰. Calcite in vesicles has δ13C and δ18O (VSMOW) values of ?4.2‰ and 24.0‰, respectively. The low δD value of the breccia rocks does not appear to be due to the presence of methane in the fluid. Instead, it is proposed that low δD and δ18O values are the result of the fluid being derived from the breakdown of clay minerals that formed and were deposited at a time of cold climate at ~290 Ma.  相似文献   
6.
The formal opportunity to learn geography in the United States is unevenly distributed across space, creating possible geography deserts. Data on the number of exams taken in Advanced Placement Human Geography (APHG) and bachelor’s degrees earned in geography are mapped at the state and regional scales. Normalized rates are ranked and grouped into quintiles. For APHG exams, states in the southeastern region of the United States are in the uppermost quintiles while states in the northeastern region are in the lowermost quintiles. The pattern for bachelor’s degrees in geography is somewhat the spatial inverse of that for APHG.  相似文献   
7.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
8.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
9.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
10.
The proportion of individuals age sixty-five and over is growing at an astronomical rate in the United States, and some estimate that this demographic age group will double by the year 2025. Older adults and adults nearing retirement age tend to reside in suburban neighborhoods and rely heavily on personal vehicles. This study uses travel diary data on automobile trips to construct activity spaces to explore whether or not travel patterns across age groups result in differential access to particular goods and services in the Orlando Metropolitan Statistical Area (MSA). Using an approach based on time geographic density estimation, this research identifies activity spaces across different age cohorts to identify differences in the automobility of different age groups. Results indicate that the geographic dispersion of activities with the Orlando MSA currently favors younger adults. Adults age fifty to sixty-four had the lowest accessibility scores compared to other age cohorts. If this preretirement group has poor access now, holding other effects constant, their access might only get worse as they get older and stop commuting. Transportation is an important consideration in planning for aging populations, and analyzing differences in how older adults travel compared to their younger counterparts can offer insight into the diverse needs of this group. Key Words: accessibility, aging populations, mobility, time geography, transportation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号