首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial heterogeneity of soil has great impacts on dynamic processes of the hydrological systems. However, it is challenging and expensive to obtain spatial distribution of soil hydraulic properties, which often requires extensive soil sampling and observations and intensive laboratory analyses, especially in high elevation, hard to access mountainous areas. This study evaluates the impacts of soil heterogeneity on hydrological process in a high elevation, topographically complex watershed in Northwest China. Two approaches were used to derive the spatial heterogeneity of soil properties in the study watershed: (1) the spatial clustering method, Full‐Order‐CLK was used to determine five soil heterogeneous clusters (configurations 97, 80, 60, 40 and 20) through large number of soil sampling and in situ observations, and (2) the average values of soil hydraulic properties for each soil type were derived from the coarse provincial soil data sets (Gansu Soil Handbook at 1 : 1 000 000 scale). Subsequently, Soil and Water Assessment Tool model was used to quantify the impact of the spatial heterogeneity of soil hydraulic properties on hydrological process in the study watershed. Results show the simulations by Soil and Water Assessment Tool with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and had more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil data sets. Thus, incorporating detailed field sampling, soil heterogeneity data greatly improve performance in hydrological modelling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We propose a conceptual model that examines the ‘variable source area’ (VSA) and ‘nitrate flushing’ hypothesis in the vertical direction, and use this approach to explain nitrate concentration–discharge relationships in a semi-arid watershed. We use an eco-hydrology simulation model (RHESSys) to show that small changes in the vertical distribution of nitrate mass and their interaction with soil hydraulic conductivity can result in abrupt changes in the nitrate concentration–discharge relationship. We show that the estimated concentration–discharge relationship is sensitive to the parameters governing soil vertical nitrate distribution and soil hydraulic conductivity, at both patch scale and watershed scale, where lateral redistribution of water and nitrate is also accounted for. Given heterogeneity in nitrogen inputs, uptake processes, soil drainage and storage processes, substantial variation in parameters that describe rate of changes in vertical distribution of soil nitrate and hydraulic properties is likely both within and between watersheds. Thus, we argue that vertical ‘variable source area’ processes may be as important as lateral VSA in determining concentration discharge relationships.  相似文献   

3.
Soil water content is a key variable for biogeochemical and atmospheric coupled processes. Its small‐scale heterogeneity impacts the partitioning of precipitation (e.g., deep percolation or transpiration) by triggering threshold processes and connecting flow paths. Forest hydrologists frequently hypothesized that throughfall and stemflow patterns induce soil water content heterogeneity, yet experimental validation is limited. Here, we pursued a pattern‐oriented approach to explore the relationship between net precipitation and soil water content. Both were measured in independent high‐resolution stratified random designs on a 1‐ha temperate mixed beech forest plot in Germany. We recorded throughfall (350 locations) and stemflow (65 trees) for 16 precipitation events in 2015. Soil water content was measured continuously in topsoil and subsoil (210 profiles). Soil wetting was only weakly related to net precipitation patterns. The precipitation‐induced pattern quickly dissipates and returns to a basic pattern, which is temporally stable. Instead, soil hydraulic properties (by the proxy of field capacity) were significantly correlated with this stable soil water content pattern, indicating that soil structure more than net precipitation drives soil water content heterogeneity. Also, both field capacity and soil water content were lower in the immediate vicinity of tree stems compared to further away at all times, including winter, despite stemflow occurrence. Thus, soil structure varies systematically according to vegetation in our site. We conclude that enhanced macroporosity increases gravity‐driven flow in stem proximal areas. Therefore, although soil water content patterns are little affected by net precipitation, the resulting soil water fluxes may strongly be affected. Specifically, this may further enhance the channelling of stemflow to greater depth and beyond the rooting zone.  相似文献   

4.
C. L. Tague  L. E. Band 《水文研究》2001,15(8):1415-1439
This paper explores the behaviour and sensitivity of a watershed model used for simulating lateral soil water redistribution and runoff production. In applications such as modelling the effects of land‐use change in small headwater catchments, interactions between soil moisture, runoff and ecological processes are important. Because climate, soil and canopy characteristics are spatially variable, both the pattern of soil moisture and the associated outflow must be represented in modelling these processes. This study compares implicit and explicit routing approaches to modelling the evolution of soil moisture pattern and spatially variable runoff production. It also addresses the implications of using different landscape partitioning strategies. This study presents the results of calibration and application of these different routing and landscape partitioning approaches on a 60 ha forested watershed in Western Oregon. For comparison, the different approaches are incorporated into a physically based hydro‐ecological model, RHESSys, and the resulting simulated soil moisture, runoff production and sensitivity to unbiased error are examined. Results illustrate that both routing approaches can be calibrated to achieve a reasonable fit between observed and modelled outflow. Calibrated values for effective watershed hydraulic conductivity are higher for the explicit routing approach, which illustrates differences between the two routing approaches in their representation of internal watershed dynamics. The explicit approach illustrates a seasonal shift in drainage organization from watershed to more local control as climate goes from a winter wet to a summer dry period. Assumptions used in the implicit approach maintain the same pattern of drainage organization throughout the season. The implicit approach is also more sensitive to random error in soil and topographic input information, particularly during wetter periods. Comparison between the two routing approaches illustrates the advantage of the explicit routing approach, although the loss of computational efficiency associated with the explicit routing approach is noted. To compare different strategies for partitioning the landscape, the use of a non‐grid‐based method of partitioning is introduced and shown to be comparable to grid‐based partitioning in terms of simulated soil moisture and runoff production. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Dynamic relationships among rainfall patterns, soil water distribution, and plant growth are crucial for sustainable conservation of soil and water resources in water‐limited ecosystems. Spatial and temporal variation in deep soil water content at a watershed scale have not yet been characterized adequately due to the lack of deep soil water data. Deep soil–water storage (SWS) up to a depth of 5 m (n = 73) was measured at 19 sampling occasions at the LaoYeManQu watershed on the Chinese Loess Plateau (CLP). At a depth of 0–1.5 m, the annual mean SWS was highly correlated with rain intensity, and the correlation decreased with depth, but within the layers at 1.5–5.0 m, the changes in SWS indicated a lag between precipitation and the replenishment of soil water. Geostatistical parameters of SWS were also highly dependent on depth, and the mean SWS presented similar spatial structures in two adjacent layers. Temporal stability of SWS as indicated by mean relative difference, standard deviation of the relative difference (SDRD), and mean absolute bias error (MABE) was significantly weaker at the shallow than at deeper layers. Soil separates and organic carbon content controlled the spatial pattern of SWS at the watershed scale. One representative location (Site 57) was identified to estimate the mean SWS in the 1‐ to 5‐m layer of the watershed. Semivariograms of the SDRD and MABE were best fitted by an isotropic spherical model, and their spatial distributions were depth‐dependent. Both temporal stability and spatial variability of SWS increased over depth. This study is helpful for deep SWS estimation and sustainable management of soil and water on the CLP, and for other similar regions around the world.  相似文献   

7.
Agroforestry systems are promoted for providing a number of ecosystem services and environmental benefits, including soil protection and carbon sequestration. This study proposes a modelling approach to quantify the impact of soil redistribution on soil organic carbon (SOC) storage in a temperate hedgerow landscape. Evolution of SOC stocks at the landscape scale was examined by simulating vertical and horizontal SOC transfers in the 0–105 cm soil layer due to soil redistribution by tillage and water processes. A spatially explicit SOC dynamics model (adapted from RothC‐26.3) was used, coupled with a soil‐redistribution model (LandSoil). SOC dynamics were simulated over 90 years in an agricultural hedgerow landscape dedicated to dairy farming, with a mix of cropping and grasslands. Climate and land use were simulated considering business‐as‐usual scenarios derived from existing information on the study area. A net decrease in SOC stocks was predicted at the end of the simulation period. Soil redistribution induced a net SOC loss equivalent to 2 kg C ha?1 yr?1 because of soil exportation out of the study site and an increase in SOC mineralization. Hedgerows and woods were the only land use in which soil redistribution induced net SOC storage. Soil tillage was the main process that induced soil redistribution within cultivated fields. Soil exportation out of the study area was due to erosion by water, but remained low because of the protective role of the hedgerow network. These soil transfers redistributed SOC stocks in the landscape, mostly within cultivated fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Soil moisture is widely recognized as a fundamental variable governing the mass and energy fluxes between the land surface and the atmosphere. In this study, the soil moisture modelling at sub‐daily timescale is addressed by using an accurate representation of the infiltration component. For that, the semi‐analytical infiltration model proposed by Corradini et al. (1997) has been incorporated into a soil water balance model to simulate the evolution in time of surface and profile soil moisture. The performances of this new soil moisture model [soil water balance module‐semi‐analytical (SWBM‐SA)] are compared with those of a precedent version [SWBM‐Green–Ampt (GA)] where the GA approach was employed. Their capability to reproduce in situ soil moisture observations at three sites in Italy, Spain and France is analysed. Hourly observations of quality‐checked rainfall, temperature and soil moisture data for a 2‐year period are used for testing the modelling approaches. Specifically, different configurations for the calibration and validation of the models are adopted by varying a single parameter, that is, the saturated hydraulic conductivity. Results indicate that both SWBMs are able to reproduce satisfactorily the hourly soil moisture temporal pattern for the three sites with root mean square errors lower than 0.024 m3/m3 both in the calibration and validation periods. For all sites, the SWBM‐SA model outperforms the SWBM‐GA with an average reduction of the root mean square error of ~20%. Specifically, the higher improvement is observed for the French site for which in situ observations are measured at 30 cm depth, and this is attributed to the capability of the SA infiltration model to simulate the time evolution of the whole soil moisture profile. The reasonable models performance coupled with the need to calibrate only a single parameter makes them useful tools for soil moisture simulation in different regions worldwide, also in scarcely gauged areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Although the importance of sustainable soil management is recognized, there are many threats to soils including widespread soil structural degradation. This reduces infiltration through the soil surface and/or the percolation of water through the soil profile, with important consequences for crop yields, nutrient cycling and the hydrological response of catchments. This article describes a broad‐scale modelling approach to assess the potential effect that improved agricultural soil management, through reduced soil structural degradation, may have on the baseflow index (BFI) of catchments across England and Wales. A daily soil–water balance model was used to simulate the indicative BFI of 45 696 thirty‐year model runs for different combinations of soil type, soil/field condition, land cover class and climate which encapsulate the variability across England and Wales. The indicative BFI of catchments was then calculated by upscaling the results by spatial weighting. WaSim model outputs of indicative BFI were within the 95% confidence intervals of the national‐average BFI values given for the Hydrology of Soil Type (HOST ? ) classes for 26 of the 28 classes. At the catchment scale, the concordance correlation coefficient between the BFI from the WaSim model outputs and those derived from HOST was 0·83. Plausible improvements in agricultural soil/field condition produced modest simulated increases of up to 10% in the indicative BFI in most catchments across England and Wales, although for much of southern and northern England the increases were less than 5%. The results suggest that improved soil management might partially mitigate the expected adverse effects of climate change on baseflow to rivers. Healthy, well‐functioning soils produce many additional benefits such as better agricultural yields and reduced pollutant movement, so improved soil management should provide win‐win opportunities for society, agricultural systems and the environment and provide resilience to some of the expected environmental impacts of climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The impacts of tillage practices, majorly conventional tillage (CT) and no-till (NT), on soil hydraulic properties have been studied in recent decades. In this paper, we incorporated an auto-calibration algorithm into the Soil and Water Assessment Tool (SWAT) model and calibrated the model at eight field sites with soil water content (SWC) observations in the Pataha Creek Watershed, WA, USA. The Green–Ampt method in SWAT was chosen to determine infiltration and surface runoff. Parameter uncertainty was quantified by “relatively optimal” parameter sets filtered by a critical objective function value. Cluster analysis was adopted to obtain equal-sized parameter sets for each site and to compare parameter sets between tillage practices. The centers of these clusters were employed as a sample of parameter values. The clustered parameter sets were then used in scenario analysis to examine the impacts of cropland tillage practices on lateral flow, runoff and evapotranspiration (ET). The model parameters (e.g., soil hydraulic properties) were significantly different between CT and NT. In particular, higher bulk density, larger available water capacity, and higher effective hydraulic conductivity were found for NT than for CT. SWCs at three depths of the NT sites were significantly higher than those of CT sites, which could be attributed to tillage practices. However, higher available water capacity at NT sites indicated that the NT soil had a higher capacity to hold water. Thus the mean net changes in SWC during a year were not significantly different between CT and NT. The statistically different model parameters neither resulted in statistical differences in annual outputs (e.g., runoff and ET) nor substantial differences in monthly outputs. Our study indicates that the tillage impacts on hydrological processes are site-specific and scale-dependent.  相似文献   

14.
The present effect of watershed subdivision on simulated water balance components using the thoroughly tested Soil and Water Assessment Tool (SWAT) model has been evaluated for the Nagwan watershed in eastern India. Observed meteorological and hydrological data (daily rainfall, temperature, relative humidity and runoff) for the years 1995 to 1998 were collected and used. The watershed and sub‐watershed boundaries, slope and soil texture maps were generated using a geographical information system. A supervised classification method was used for land‐use/cover classification from satellite imagery of 1996. In order to study the effect of watershed subdivision, the watershed was spatially defined into three decomposition schemes, namely a single watershed, and 12 and 22 sub‐watersheds. The simulation using the SWAT model was done for a period of 4 years (1995 to 1998). Results of the study showed a perfect water balance for the Nagwan watershed under all of the decomposition schemes. Results also revealed that the number and size of sub‐watersheds do not appreciably affect surface runoff. Except for runoff, there was a marked variation in the individual components of the water balance under the three decomposition schemes. Though the runoff component of the water balance showed negligible variation among the three cases, variations were noticed in the other components: evapotranspiration (5 to 48%), percolation (2 to 26%) and soil water content (0·30 to 22%). Thus, based on this study, it is concluded that watershed subdivision has a significant effect on the water balance components. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The study analyses a 2-year period of hourly rates of real evapotranspiration (ETr) derived from eddy covariance measurements and soil water contents at depths from 8 to 90 cm, monitored by time domain reflectometry probes at the grass-covered boundary-layer field site Falkenberg of the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory, operated by the German Meteorological Service (DWD). The ETr rates and soil water contents were compared with the results of a modelling approach consisting of the Penman-Monteith equation and the soil water balance model Hydrus-1D using a noncompensatory and a compensatory root-water uptake model. After optimization of soil hydraulic parameters by inverse modelling, using measured soil water contents as the objective function, simulated and measured model outputs showed good agreement for soil water contents above 90 cm depth and for ETr rates simulated by our modelling approaches using noncompensatory root-water uptake. The application of a compensatory root-water uptake model led to a decrease in the simulation quality for the total investigation period.

Editor Z.W. Kundzewicz

Citation Wegehenkel, M. and Beyrich, F., 2014. Modelling of hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrological Sciences Journal, 59 (2), 376–394.  相似文献   

16.
Soil loss on arable agricultural land is typically an order of magnitude higher than under undisturbed native vegetation. Although there have been several recent attempts to quantify these accelerated fluxes at the regional, continental and even global scale, all of these studies have focused on erosion by water and wind and no large scale assessment of the magnitude of tillage erosion has been made, despite growing recognition of its significance on agricultural land. Previous field scale simulations of tillage erosion severity have relied on use of high resolution topographic data to derive the measures of slope curvature needed to estimate tillage erosion rates. Here we present a method to derive the required measures of slope curvature from low resolution, but large scale, databases and use high resolution topographical datasets for several study areas in the UK to evaluate the reliability of the approach. On the basis of a tillage model and land‐use databases, we estimate the mean gross tillage erosion rates for the part of Europe covered by the CORINE database (6·5% of global cropland) and we obtained an average of 3·3 Mg ha–1 y–1, which corresponds to a sediment flux of 0·35 Pg y–1. Water erosion rates derived for the same area are of a similar magnitude. This redistribution of soil within agricultural fields substantially accelerates soil profile truncation and sediment burial in specific landscape positions and has a strong impact on medium‐term soil profile evolution. It is, therefore, clear that tillage erosion must be accounted for in regional assessments of sediment fluxes and in analyses that employ these in the analysis of land management strategies and biogeochemical cycles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field‐scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within ± 0·9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Representation of agricultural conservation practices with SWAT   总被引:5,自引:0,他引:5  
Results of modelling studies for the evaluation of water quality impacts of agricultural conservation practices depend heavily on the numerical procedure used to represent the practices. Herein, a method for the representation of several agricultural conservation practices with the Soil and Water Assessment Tool (SWAT) is developed and evaluated. The representation procedure entails identifying hydrologic and water quality processes that are affected by practice implementation, selecting SWAT parameters that represent the affected processes, performing a sensitivity analysis to ascertain the sensitivity of model outputs to selected parameters, adjusting the selected parameters based on the function of conservation practices, and verifying the reasonableness of the SWAT results. This representation procedure is demonstrated for a case study of a small agricultural watershed in Indiana in the Midwestern USA. The methods developed in the present work can be applied with other watershed models that employ similar underlying equations to represent hydrologic and water quality processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Many researchers have examined the impact of detailed soil spatial information on hydrological modelling due to the fact that such information serves as important input to hydrological modelling, yet is difficult and expensive to obtain. Most research has focused on the effects at single scales; however, the effects in the context of spatial aggregation across different scales are largely missing. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information: the 10‐m‐resolution soil data derived from the Soil‐Land Inference Model (SoLIM) and the 1:24000 scale Soil Survey Geographic (SSURGO) database in the United States. The study was conducted at three different spatial scales: two at different watershed size levels (referred to as full watershed and sub‐basin, respectively) and one at the model minimum simulation unit level. A fully distributed hydrologic model (WetSpa) and a semi‐distributed model (SWAT) were used to assess the effects. The results show that at the minimum simulation unit level the differences in simulated runoff are large, but the differences gradually decrease as the spatial scale of the simulation units increases. For sub‐basins larger than 10 km2 in the study area, stream flows simulated by spatially detailed SoLIM soil data do not significantly vary from those by SSURGO. The effects of spatial scale are shown to correlate with aggregation effect of the watershed routing process. The unique findings of this paper provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of soil data affects watershed modelling. Different views result from different scales at which those studies were conducted. In addition, the findings offer a potentially useful basis for selecting details of soil spatial information appropriate for watershed modelling at a given scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Topography exerts critical controls on many hydrologic, geomorphologic and biophysical processes. However, many watershed modelling systems use topographic data only to define basin boundaries and stream channels, neglecting opportunities to account for topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. Here, we demonstrate a method that uses topographic data to adjust spatial soil morphologic and hydrologic attributes: texture, depth to the C‐horizon, saturated conductivity, bulk density, porosity and the water capacities at field (33 kpa) and wilting point (1500 kpa) tensions. As a proof of concept and initial performance test, the values of the topographically adjusted soil parameters and those from the Soil Survey Geographic Database (SSURGO; available at 1 : 20 000 scale) were compared with measured soil pedon pit data in the Grasslands Soil and Water Research Lab watershed in Riesel, TX. The topographically adjusted soils were better correlated with the pit measurements than were the SSURGO values. We then incorporated the topographically adjusted soils into an initialization of the Soil and Water Assessment Tool model for 15 Riesel research watersheds to investigate how changes in soil properties influence modelled hydrological responses at the field scale. The results showed that the topographically adjusted soils produced better runoff predictions in 50% of the fields, with the SSURGO soils performing better in the remainder. In addition, the a priori adjusted soils result in fewer calibrated model parameters. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases, improve model performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号