首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This study identifies possible hotspots of climate change in South America through an examination of the spatial pattern of the Regional Climate Change Index (RCCI) over the region by the end of the twenty-first century. The RCCI is a qualitative index that can synthesize a large number of climate model projections, and it is suitable for identifying those regions where climate change could be more pronounced in a warmer climate. The reliability and uncertainties of the results are evaluated by using numerous state-of-the-art general circulation models (GCMs) and forcing scenarios from the Coupled Model Intercomparison Project phases 3 and 5. The results show that southern Amazonia and the central-western region and western portion of Minas Gerais state in Brazil are persistent climate change hotspots through different forcing scenarios and GCM datasets. In general, as the scenarios vary from low- to high-level forcing, the area of high values of RCCI increase and the magnitude intensify from central-western and southeast Brazil to northwest South America. In general, the climatic hotspots identified in this study are characterized by an increase of mean surface air temperature, mainly in the austral winter; by an increase of interannual temperature variability, predominantly in the austral summer; and by a change in the mean and interannual variability of precipitation during the austral winter.  相似文献   

2.
It is well accepted within the scientific community that a large ensemble of different projections is required to achieve robust climate change information for a specific region. For this purpose we have compiled a state-of-the-art multi-model multi-scenario ensemble of global and regional precipitation projections. This ensemble combines several global projections from the CMIP3 and CMIP5 databases, along with some recently downscaled regional CORDEX-Africa projections. Altogether daily precipitation data from 77 different climate change projections is analysed; separated into 31 projections for a high and 46 for a low emission scenario. We find a robust indication that, independent of the underlying emission scenario, annual total precipitation amounts over the central African region are not likely to change severely in the future. However some robust changes in precipitation characteristics, like the intensification of heavy rainfall events as well as an increase in the number of dry spells during the rainy season are projected for the future. Further analysis shows that over some regions the results of the climate change assessment clearly depend on the size of the analyzed ensemble. This indicates the need of a “large-enough” ensemble of independent climate projections to allow for a reliable climate change assessment.  相似文献   

3.
Projecting twenty-first century regional sea-level changes   总被引:2,自引:0,他引:2  
We present regional sea-level projections and associated uncertainty estimates for the end of the 21 st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty.  相似文献   

4.
The patterns of large-scale climate change over the 21st century simulated by 23 CMIP3 global climate models are analyzed to provide understanding of the range of projected temperature T and precipitation P changes for Australia published in 2007. Means of change, standardized by the global warming, within each of 11 regions are calculated for each model. Correlations between regions across the 23 models indicate that the changes are rather coherent across much of the mainland. The all-Australian average changes are also well correlated with a pattern of tropical sea surface temperatures. A Pacific-Indian Dipole index, representing this pattern, correlates strongly with Australian P. It also correlates well with variables in Southeast Asia. The global warming itself correlates well with Australian warming. These two indices of large-scale ocean warming are used to partition the 23 models into four representative future climates. For Australia overall, these can be described as much warmer and drier, much warmer, warmer and drier, and warmer. The four climates span much of the range of the earlier Australian projections over most of the continent. Further, they may be reproduced by a downscaling model forced with the SST anomalies. An assessment of the realism of the ocean pattern changes has the potential to reduce the uncertainty of projections, both for Australia and beyond.  相似文献   

5.
Smallholder farming is among the most vulnerable sectors due to its great social and economic sensitivity. Despite future climate change, current climate variability is already an issue of concern that justifies adaptation efforts. In Brazil, the Semi-Arid Region is a climate hotspot, well known for both historic socioeconomic setbacks, and agriculture failures caused by dry spells and severe droughts. In 2010, the Brazilian government enacted the National Policy on Climate Change, which states as one of its key goals the identification of vulnerabilities and the adoption of adequate measures of adaptation to climate change. The improvement of vulnerability assessment tools is a response to the growing demand of decision makers for regular information and indicators with high spatial and temporal resolution. This article aims at undertaking a comparative assessment of smallholder farming’s vulnerability to droughts. An integrated assessment system has been developed and applied to seven municipalities located in the Brazilian Semi-Arid Region (within the State of Ceará). Results show regional vulnerability contrasts driven by institutional and socioeconomic factors, beyond climatic stressors.  相似文献   

6.
A comparative performance analysis was studied on well-known drought indices (Standardized Precipitation Index, Palmer Drought Severity Index (PDSI) and its moisture anomaly index (Orig-Z), and self-calibrated Palmer Drought Severity Index (SC-PDSI) and its moisture anomaly index (SC-Z)) to determine the most appropriate index for assessing olive (O. europaea L.) yield for oil in seven crop regions (Mu?la, Ayd?n, ?zmir, Manisa, Bal?kesir, ?anakkale, and Bursa) in western Turkey and to evaluate the vulnerability of olive yield for oil to climate change with future projections provided by the Hadley Centre for Climate Prediction and Research ENSEMBLES project (HadCM3Q0). A series of curvilinear regression-based crop yield models were developed for each of the olive-growing regions based on the drought indices. The crop yield model that performed the best was the SC-PDSI model in Mu?la, Ayd?n, ?zmir, and Manisa regions and the PDSI model in ?anakkale, Bal?kesir, and Bursa regions. The SC-PDSI index-based model described 65%, 62%, 61%, and 62% of the measured variability of olive yield in Mu?la, Ayd?n, ?zmir, and Manisa regions, respectively. The PDSI index-based model explained 59%, 58%, and 64% of the measured variability of olive yield in Bal?kesir, ?anakkale, and Bursa regions, respectively. The vulnerability of the olive yield for oil to HadCM3Q0 future climate projections was evaluated for Ayd?n and ?anakkale regions due to the resolution of the regional climate model. In terms of the future scenarios, the expected decrease in olive yield residuals was 2.5?ton (103 trees)?1 and 1.78?ton (103 trees)?1 in Ayd?n and ?anakkale regions, respectively.  相似文献   

7.
Roy Darwin 《Climatic change》2004,66(1-2):191-238
Because of many uncertainties, quantitative estimates of agriculturally related economic impacts of greenhouse gas emissions are often given low confidence. A major source of uncertainty is our inability to accurately project future changes in economic activity, emissions, and climate. This paper focuses on two issues. First, to what extent do variable projections of climate generate uncertainty in agriculturally related economic impacts? Second, to what extent do agriculturally related economic impacts of greenhouse gas emissions depend on economic conditions at the time of impacts? Results indicate that uncertainty due to variable projections of climate is fairly large for most of the economic effects evaluated in this analysis. Results also indicate that economic conditions at the time of impact influence the direction and size of as well as the confidence in the economic effects of identical projections of greenhouse gas impacts. The economic variable that behaves most consistently in this analysis is world crop production. Increases in mean global temperature, for example, cause world crop production to decrease on average under both 1990 and improved economic conditions and in both instances the confidence with respect to variable projections of climate is medium (e.g.,67%) or greater. In addition and as expected, CO2 fertilization causesworld crop production to increase on average under 1990 and improved economic conditions. These results suggest that crop production may be a fairly robust indicator of the potential impacts of greenhouse gas emissions.A somewhat unexpected finding is that improved economic conditions are not necessarily a panacea to potential greenhouse-gas-induced damages, particularly at the region level. In fact, in some regions, impacts of climate change or CO2 fertilization that are beneficial undercurrent economic conditions may be detrimental under improved economic conditions (relative to the new economic base). Australia plus New Zealand suffer from this effect in this analysis because under improved economic conditions they are assumed to obtain a relatively large share of income from agricultural exports. When the climate-change and CO2-fertilization scenariosin this analysis are also included, agricultural exports from Australia plus New Zealand decline on average. The resultant declines in agricultural income in Australia plus New Zealand are too large to be completely offset by rising incomes in other sectors. This indicates that regions that rely on agricultural exports for relatively large shares of their income may be vulnerable not only to direct climate-induced agricultural damages, but also to positive impacts induced by greenhouse gas emissions elsewhere.  相似文献   

8.
To assess the influence of global climate change at the regional scale, we examine past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE). We first consider the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators. We then evaluate projected future trends in primary climate characteristics and indicators of change, including seasonal temperatures, rainfall and drought, snow cover, soil moisture, streamflow, and changes in biometeorological indicators that depend on threshold or accumulated temperatures such as growing season, frost days, and Spring Indices (SI). Changes in indicators for which temperature-related signals have already been observed (seasonal warming patterns, advances in high-spring streamflow, decreases in snow depth, extended growing seasons, earlier bloom dates) are generally reproduced by past model simulations and are projected to continue in the future. Other indicators for which trends have not yet been observed also show projected future changes consistent with a warmer climate (shrinking snow cover, more frequent droughts, and extended low-flow periods in summer). The magnitude of temperature-driven trends in the future are generally projected to be higher under the Special Report on Emission Scenarios (SRES) mid-high (A2) and higher (A1FI) emissions scenarios than under the lower (B1) scenario. These results provide confidence regarding the direction of many regional climate trends, and highlight the fundamental role of future emissions in determining the potential magnitude of changes we can expect over the coming century.
Katharine HayhoeEmail:
  相似文献   

9.
Spatially precise forecasts of the impacts of climate change on the distribution of major vegetation types are essential for the implementation of effective conservation and land use policy. However, existing studies frequently omit major sources of climate variability that can significantly increase the uncertainty of projections. In this study we demonstrate how different predictions for sea surface temperature (SST) for the first half of the twenty-first century increase the uncertainty associated with forecasts of the future distribution of major ecosystems in South America. This is demonstrated through a numerical experiment using a coupled climate–vegetation model (CCM3-IBIS) for IPCC emission scenario A2 that incorporates the SST data from ten different models. The study reveals an increasing uncertainty in the ability to forecast future vegetation patterns, such that by 2050 the simulation is unable to robustly forecast the vegetation cover in an area equivalent to 28 % in South America (5?×?106 km2). The future of the central and northeastern regions of Brazil is especially uncertain, with outcomes, ranging from savanna, and open shrubland to grassland. Recognizing and managing such uncertainty should be a priority for decision makers.  相似文献   

10.
INFORM Risk Index is a global indicator-based disaster risk assessment tool that combines hazards, exposure, vulnerability and lack of coping capacity indicators with the purpose to support humanitarian crisis management decisions considering the current climate and population. In this exploratory study, we extend the Index to include future climate change and population projections using RCP 8.5 climate projections of coastal flood, river flood and drought, and SSP3 and SSP5 population projections for the period 2036 to 2065. For the three hazards considered, annually 1.3 billion people (150% increase), 1.8 billion people (249% increase) and 1.5 billion people (197% increase) in the mid-21st century are projected to be exposed under the 2015, SSP3 and SSP5 population estimates, respectively. Drought shows the highest exposure levels followed by river flood and then coastal flood, with some regional differences. The largest exposed population is projected in Asia, while the largest percent changes are projected in Africa and Oceania. Countries with largest current and projected risk including non-climatic factors are generally located in Africa, West and South Asia and Central America. An uncertainty analysis of the extended index shows that it is generally robust and not influenced by the methodological choices. The projected changes in risk and coping capacity (vulnerability) due to climate change are generally greater than those associated with population changes. Countries in Europe, Western and Northern Asia and Africa tend to show higher reduction levels in vulnerability (lack of coping capacity) required to nullify the adverse impacts of the projected amplified hazards and exposure. The required increase in coping capacity (decreased vulnerability) can inform decision-making processes on disaster risk reduction and adaptation options to maintain manageable risk levels at global and national scale. Overall, the extended INFORM Risk Index is a means to integrate Disaster Risk Reduction and Climate Change Adaptation policy agendas to create conditions for greater policy impact, more efficient use of resources and more effective action in protecting life, livelihoods and valuable assets.  相似文献   

11.
A population’s attitudes toward climate change can strongly influence governmental policies as well as community and individual climate-related behaviors. These attitudes have been explained with a variety of factors, including cultural worldviews, environmental attitudes, political ideology, knowledge of climate change, severe weather exposure, and sociodemographic characteristics. These studies typically assume an individual forms attitudes on the basis of preexisting values or beliefs and do not account for dynamic social interaction as a source of influence. This study introduces a network perspective that accounts for the social embeddedness of individuals, using network variables to predict climate attitudes, including homophily, network strength, attitude diversity, centrality, network size, and network valence. An exploratory factor analysis identified two distinct attitudinal dimensions: climate change epistemic skepticism and belief strength. Using egocentric data from a nationally representative survey collected in 2011, this study found that network variables were significant in predicting both climate attitude dimensions; hierarchical regression analyses accounting for other known predictors found two different predictive models for epistemic skepticism and belief strength. Homophily, network strength, attitude diversity, and network valence predicted epistemic skepticism (R2change = 4.8%), while centrality and network strength predicted belief strength (R2change = 8.9%). The analyses also found support for cultural factors as significant predictors of climate attitudes, particularly Christianity and cultural worldviews. The results of this study suggest that interpersonal influence through communication networks is a promising avenue for continued research, and should be included in studies of climate attitude formation and change.  相似文献   

12.
A comparison of two approaches for determining probabilistic climate change impacts is presented. In the first approach, ensemble climate projections are applied directly as inputs to an impact model and the risk of impact is computed from the resulting ensemble of outcomes. As this can involve large numbers of projections, the approach may prove to be impractical when applied to complex impact models with demanding input requirements. The second approach is to construct an impact response surface based on a sensitivity analysis of the impact model with respect to changes in key climatic variables, and then to superimpose probabilistic projections of future climate onto the response surface to assess the risk of impact. To illustrate this comparison, an impact model describing the spatial distribution of palsas in Fennoscandia was applied to estimate the risk of palsa disappearance. Palsas are northern mire complexes with permanently frozen peat hummocks, located at the outer limit of the permafrost zone and susceptible to rapid decline due to regional warming. Probabilities of climate changes were derived from an ensemble of coupled atmosphere–ocean general circulation model (AOGCM) projections using a re-sampling method. Results indicated that the response surface approach, though introducing additional uncertainty, gave risk estimates of area decline for palsa suitability that were comparable to those obtained using multiple simulations with the original palsa model. It was estimated as very likely (>90% probability) that a decline of area suitable for palsas to less than half of the baseline distribution will occur by the 2030s and likely (>66%) that all suitable areas will disappear by the end of the twenty-first century under scenarios of medium (A1B) and moderately high (A2) emissions. For a low emissions (B1) scenario, it was more likely than not (>50%) that conditions over a small fraction of the current palsa distribution would remain suitable until the end of the twenty-first century.  相似文献   

13.
Future changes in precipitation represent one of the most important and uncertain possible effects of future climate change. We demonstrate a new approach based on idealised CO2 step-change general circulation model (GCM) experiments, and test it using the HadCM3 GCM. The approach has two purposes: to help understand GCM projections, and to build and test a fast simple model for precipitation projections under a wide range of forcing scenarios. Overall, we find that the CO2 step experiments contain much information that is relevant to transient projections, but that is more easily extracted due to the idealised experimental design. We find that the temporary acceleration of global-mean precipitation in this GCM following CO2 ramp-down cannot be fully explained simply using linear responses to CO2 and temperature. A more complete explanation can be achieved with an additional term representing interaction between CO2 and temperature effects. Energy budget analysis of this term is dominated by clear-sky outgoing long-wave radiation (CSOLR) and sensible heating, but cloud and short-wave terms also contribute. The dominant CSOLR interaction is attributable to increased CO2 raising the mean emission level to colder altitudes, which reduces the rate of increase of OLR with warming. This behaviour can be reproduced by our simple model. On regional scales, we compare our approach with linear ‘pattern-scaling’ (scaling regional responses by global-mean temperature change). In regions where our model predicts linear change, pattern-scaling works equally well. In some regions, however, substantial deviations from linear scaling with global-mean temperature are found, and our simple model provides more accurate projections. The idealised experiments reveal a complex pattern of non-linear behaviour. There are likely to be a range of controlling physical mechanisms, different from those dominating the global-mean response, requiring focussed investigation for individual regions, and in other GCMs.  相似文献   

14.
A regional vulnerability study in relation to the projected patterns of climate change (A2 and B2 scenarios) was developed for the Brazilian Northeastern region. An aggregated Vulnerability Index was constructed for each of the nine States of the region, based on the following information: population projections; climate-induced migration scenarios; disease trends; desertification rates; economic projections (GDP and employment) and projections for health care costs. The results obtained shall subsidize public policies for the protection of the human population from the projected impacts of regional changes in climate patterns.  相似文献   

15.
Dealing with the threat of anthropogenic climate change has been a challenge for policy makers for a long time. In recent years, the problems posed by climate change and solutions proposed to mitigate its effects have been framed by lexical ‘carbon compounds’, such as carbon footprint or carbon trading and by one dominant metaphor, the market metaphor. Through a detailed content analysis of industry and press coverage from 1985 to the present, this paper examines the fate of one important lexical compound in this context, namely low carbon, which can be used as an adjective or a noun. Over the last two decades this lexical compound moved across and between three discourses, the steel industry, the car industry and what one might call the climate change industry. Using insights from ecolinguistics and the sociology of expectations, the paper discusses how the lexical compound low carbon in general and the metaphor low carbon future in particular came to prominence in policy discourses, especially in the UK, and how they were used to frame expectations of a prosperous low carbon future, while sidelining deeper social and cultural reflections on climate change mitigation.  相似文献   

16.
Increasing rates of climate migration may be of economic and national concern to sending and destination countries. It has been argued that social networks—the ties connecting an origin and destination—may operate as “migration corridors” with the potential to strongly facilitate climate change-related migration. This study investigates whether social networks at the household and community levels amplify or suppress the impact of climate change on international migration from rural Mexico. A novel set of 15 climate change indices was generated based on daily temperature and precipitation data for 214 weather stations across Mexico. Employing geostatistical interpolation techniques, the climate change values were linked to 68 rural municipalities for which sociodemographic data and detailed migration histories were available from the Mexican Migration Project. Multi-level discrete-time event-history models were used to investigate the effect of climate change on international migration between 1986 and 1999. At the household level, the effect of social networks was approximated by comparing the first to the last move, assuming that through the first move a household establishes internal social capital. At the community level, the impact of social capital was explored through interactions with a measure of the proportion of adults with migration experience. The results show that rather than amplifying, social capital may suppress the sensitivity of migration to climate triggers, suggesting that social networks could facilitate climate change adaptation in place.  相似文献   

17.
Bangladesh, the sixth largest rice producer in the world, has been identified as high risk from the effects of climate change. Many of the adverse impacts of climate change such as land inundation and changes in weather patterns and CO2 levels will impact the agricultural sector. This study develops a partial-equilibrium multi-regional farm household model of Bangladesh rice and non-rice agricultural markets to quantify the impacts of climate change on consumption, production, prices, and farmers’ welfare. The model is calibrated to the Bangladesh rice market using Household Income and Expenditure Survey data. The model is simulated to analyze the impact of land reduction and productivity decline resulting from climate change. The results show that the decline in production in the coastal and northern regions offsets the production increase in the central and eastern regions, and the simulation predicts that total rice production for Bangladesh falls by about 2%. As total rice consumption falls and imports rise, the net effect leads to a rise in the rice price by 5.71% and a decline in farmers’ welfare. Sensitivity analysis shows that more- (less-) effective abatement technology could play a key role in mitigating (exacerbating) the price and welfare effects. The model predicts that many farmers in regions directly impacted by climate change could leave farming in search of off-farm work. Thus, the government can ease this transition by promoting urban development to provide more job options and technical training for farmers.  相似文献   

18.
The latest scientific findings indicate that the increased concentration of greenhouse gases emitted by anthropogenic sources is significantly altering the balance of the global climate system. Considering forecasts of changes in the hydrological cycle and temperature related to global warming, the dynamics governing the functioning of the Pantanal Wetland, responsible for its rich biodiversity, find themselves threatened. Thus, this study was designed in the space-time of the Pantanal people called pantaneiros, and aims to discuss the Traditional Ecological Knowledge (TEK) of the Traditional Community Cuiabá Mirim regarding climate change. The information presented was obtained from 22 pantaneiros, between March 2008 and March 2010. The population sample was selected by the Snow Ball method. For data collection, semi structured interviews and oral histories were used. The results were compared with observations, simulations and projections of the IPCC AR4 for the region. The main findings of this research indicate that TEK presents itself as a crucial and complementary source of information for the development of local/regional adaptation strategies to climate change, bringing a distinct and relevant point of view from vulnerable stakeholders to the decision makers.  相似文献   

19.
Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961–1990) and projections for the IPCC A2 high emission scenario for 2071–2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N–15°S band, both in summer and especially in winter, reaching up to 6–8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.  相似文献   

20.
As climate change policies and governance initiatives struggle to produce the transformational social changes required, the search for stand out case studies continues. Many have pointed to the period between 2005 and 2008 in the United Kingdom as a promising example of national level innovation. With strong cross-party consensus and a first-of-its-kind legislation the UK established itself as a climate policy leader. However, early warning signs suggest that this institutionalised position is far from secure. Through a novel application of discursive institutionalism this article presents a detailed analysis of the role of ideas in unravelling this ambition under the Conservative-Liberal coalition administration (2010–2015). Discursive interactions among policymakers and other political actors were dominated by ideas about governmental responsibility and economic austerity, establishing an atmosphere of climate policy scepticism and restraint. By situating this conspicuous and influential process of bricolage within its institutional context the importance of how policymakers think and communicate about climate change is made apparent. The power of ideas to influence policy is further demonstrated through their cognitive and normative persuasiveness, by imposing over and excluding alternatives and in their institutional positioning. It can be concluded that despite innovative legislation, institution building and strategic coordination of different types of governance actors the ideational foundations of ambitious climate change politics in the UK have been undermined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号