首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The Lenga Estuary is a small brackish wetland located southwest of San Vicente Bay, Region VIII, Chile. Surface sediment from nine sites in the estuary were analysed for PAHs and compared to Sediment Quality Guidelines (SQG). Sediment samples were freeze dried and soxhlet extracted for 16 h using DCM. Identification and quantification was carried out by HPLC. Organic carbon was also determined. Results showed total PAH concentrations ranged from 290 to 6118 (2025 ± 1975) ng g−1 d.w. (2025 ± 1975). Results for organic carbon percentages ranged from 1% to 7%. Statistical analysis showed a significant positive correlation (Pearson test) between organic carbon percentage PAHs. Comparison of contaminant levels and international Sediment Quality Guidelines (SQG) (ERL and ER) suggested that sediment of the Lenga estuary did not show any ecotoxicologial risk for benthic organisms where high levels of PAHs were detected. Monitoring of this and other contaminants is recommended in Chile.  相似文献   

2.
Polychlorinated biphenyls (PCBs) and 17 parent polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from nine stations in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Total PAH concentrations ranged from 380 to 12,750 microg/kg d.w., while total PCB levels ranged from 2 to 1684 microg/kg d.w.; this values were higher than those found in others marine coastal areas of the Mediterranean Sea. For PAHs, low molecular weight/high molecular weight, phenanthrene/anthracene and fluoranthene/pyrene ratio were used for discriminating between pyrolitic and petroleum origin. Results showed that PAHs were mainly of pyrolitic origin. PCB and PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism. Finally, ERM and PEL quotients were used to evaluate the degree to which chemicals exceed guidelines. Results suggest an ecotoxicological risk for benthic organisms mainly in the first inlet, where high concentrations of PCBs were found in sediments influenced by harbour activities.  相似文献   

3.
《Marine pollution bulletin》2008,56(10-12):451-458
Polychlorinated biphenyls (PCBs) and 17 parent polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from nine stations in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Total PAH concentrations ranged from 380 to 12,750 μg/kg d.w., while total PCB levels ranged from 2 to 1684 μg/kg d.w.; this values were higher than those found in others marine coastal areas of the Mediterranean Sea. For PAHs, low molecular weight/high molecular weight, phenanthrene/anthracene and fluoranthene/pyrene ratio were used for discriminating between pyrolitic and petroleum origin. Results showed that PAHs were mainly of pyrolitic origin. PCB and PAH levels in sediments were compared with Sediments Quality Guidelines (ERM–ERL, TEL–PEL indexes) for evaluation probable toxic effects on marine organism. Finally, ERM and PEL quotients were used to evaluate the degree to which chemicals exceed guidelines. Results suggest an ecotoxicological risk for benthic organisms mainly in the first inlet, where high concentrations of PCBs were found in sediments influenced by harbour activities.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) were detected in water and sediment samples collected from three mariculture zones in China’s northern Yellow Sea. In these samples, total PAH concentrations ranged from 110.8 ng/L to 997.2 ng/L and 142.2 ng/g dry weight (dw) to 750.2 ng/g dw, respectively. The log KOC values of the various PAH compounds examined in this study increased with the log KOW values, which is consistent with the prediction regarding PAH behavior in the environment. However, these KOC values were lower than the predicted values as a result of the effects of organic matters, which were abundant in the mariculture water. The isomeric ratios of the PAHs in sediment indicated that the source of the PAHs in the mariculture zones were mainly pyrolytic. The TEQcarc values of PAHs ranged from 7 ng TEQ/g dw to 92 ng TEQ/g dw, and only a few samples met the safe criterion with respect to individual PAH concentrations.  相似文献   

5.
The distributions of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the aqueous phase, suspended particulate matter (SPM), sediment, and pore water of the Daliao River Estuary in Liaodong Bay, Bohai Sea (China). Total PAH concentrations ranged from 139.16 to 1717.87 ng L−1 in surface water, from 226.57 to 1404.85 ng L−1 dry weight in SPM, from 276.26 to 1606.89 ng g−1 dry weight in sediments, and from 10.20 to 47.27 μg L−1 in pore water. PAH concentrations were at relatively moderate levels in water, SPM, sediment and pore water in comparison with those reported for other estuary and marine systems around the world. Sedimentary PAH concentrations decreased offshore owing to active deposition of laterally-transported river-borne particles. PCA analysis of the possible PAH source suggested petrogenic and pyrolytic PAH inputs in the studied region.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) were sampled from 30 sediment and 8 mussel (Mytilus edulis) stations in two Northern Irish Sea-toughs. Analysis was performed by gas chromatography coupled to mass spectrometry (GC-MS). Sedimentary organic carbon, % silt/clay and mean grain size were analysed in order to assess the role of geochemistry on PAH distribution. With the exception of two sites in Larne Lough representing localized regions of high contamination, sum(PAHs) in sediments ranged between 83 and 2300 ng g(-1). Regression analysis indicated that particle size and organic C were dominant factors in controlling the distribution of PAHs throughout the sediments. Sources of PAHs in both sea-loughs were dominated by pyrogenic inputs suggesting that diffuse sources such as atmospheric deposition may be a major source to both water bodies. The sum of PAHs in mussels ranged between 95 and 184 ng g(-1). Variations in concentrations may be explained by differences in the condition between mussel populations. Mussels in both sea-loughs exhibit similar metabolic activities towards the PAH compounds which were predominantly bioaccumulated from sediments.  相似文献   

7.
The concentrations of 16 US EPA priority pollutant polycyclic aromatic hydrocarbons (PAHs) were analyzed in four size fractions (< 62, 62-125, 125-250, and > 250 microm) in three contaminated Boston Harbor sediments. Total PAH concentrations ranged from 7.3 to 358 microg/g dry wt. and varied largely among the different size fractions in these sediments. For all three sites, the highest PAH concentrations were associated with the large size (> 250 microm) fractions while the fine silt and clay fractions (< 62 microm) contained relatively low PAHs. Despite the great concentration differences, the composition of PAHs in the four size fractions of these sediments showed similar patterns dominated by PAHs with three or more rings. By examining the distribution patterns of selected alkyl homologs to parent compounds, the results indicate that the major PAHs contributing to the high contamination in the inner harbor sediments were from pyrogenic sources. A positive correlation between PAHs and sedimentary organic carbon exists for all size fractions in the sediments. Calculated organic carbon normalized partition coefficients (log K(oc)) for selected major PAHs indicate near-equilibrium partitioning of PAHs among the different size fractions despite their large concentration variations. Sedimentary organic matter associated with different size fractions was the controlling factor for the observed distribution differences of PAHs among the size fractions. Our results also suggest that sedimentary organic matter with different origins and maturities may have somewhat different PAH sorption characteristics. Particulate organic matter of charcoal, plant detritus and Capitella fecal pellets in the sediments appear to sorb PAHs more strongly than organic matter associated with clay minerals. The strong association of PAHs with these organic particles in sediments will have a great influence not only on their distribution but also on long-term environmental impact.  相似文献   

8.
PAH concentrations of 61 surface soil samples collected from the Yellow River Delta (YRD), China were measured to determine occurrence levels, sources, and potential toxicological significance of PAHs. The total concentrations of ∑PAHs ranged from 27 to 753 ng/g d.w., with a mean of 118 ± 132 ng/g. The highest concentrations was found in the mid-southern part of the YRD (753 ng/g), which was associated with the oil exploration. The ratios indicated that the PAHs throughout the YRD were mostly of pyrogenic origin; while various sites in mid-southern part in the region were derived mainly from the petrogenic sources. Multivariate statistical analyses supported that the PAHs in surface soils of the YRD were principally from the coal and biomass combustion, petroleum spills, and/or vehicular emissions. The toxic assessment suggested that the PAHs in soils were at low potential of ecotoxicological contamination level for the YRD.  相似文献   

9.
Wang C  Sun H  Chang Y  Song Z  Qin X 《Marine pollution bulletin》2011,62(12):2714-2723
Six sediment samples collected from the Gulf of Mexico were analyzed. Total concentrations of the PAHs ranged from 52 to 403 ng g−1 dry weight. The lowest PAH concentration without 5–6 rings PAHs appeared in S-1 sample associated with gas hydrate or gas venting. Moreover, S-1 sample had the lowest organic carbon content with 0.85% and highest reduced sulfur level with 1.21% relative to other samples. And, analysis of the sources of PAHs in S-1 sample indicated that both pyrogenic and petrogenic sources, converserly, while S-8, S-10 and S-11 sample suggested petrogenic origin. The distribution of dibenzothiophene, fluorine and dibenzofuran and the maturity parameters of triaromatic steranes suggested that organic matters in S-1 sample were different from that in S-8, S-10 and S-11 sample. This study suggested that organic geochemical data could help in distinguish the characteristic of sediment associated with gas hydrate or with oil seepage.  相似文献   

10.
Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g−1 to 1025 ng g−1. The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe + Ant), (Flt/Flt + Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin.  相似文献   

11.
The nature, origin and distribution of US EPA polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (North Sardinia, Italy) were investigated by gas-chromatography/mass spectrometry (GCMS). PAH concentrations in the sediments (SigmaPAHs) ranged from 0.16 to 0.77 microg g(-1), indicating a homogeneously low level of pollution. A rather exceptional prevalence of low molecular weight PAHs was substantiated: nearly 80% of SigmaPAHs include naphthalene (15.19%) and phenanthrene (64.47%). Carcinogenic compounds were present in very low (BaP, BkF, BaA and DBA) or negligible (BbF and Inp) concentrations. As indicated by the Phen/Ant molar ratio, the main source of PAHs is petrogenic, probably due to oil spills from shipping. The low/high molecular weight ratio (ranging between 1.2 and 26) distinguishes the sediments of the tourist harbor from those of the commercial/industrial harbor. Moreover, a slight but meaningful pyrolytic contribution to pollution was found in the tourist harbor, which has the most polluted sediments in the whole harbor. Finally, good linear correlations were found between a selected PAH (Phen and Naph) and selected sums of PAHs (i.e. the total amount of the other 15 US EPA and the sum of low molecular weight PAHs).  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) were measured in plasma samples of 162 juvenile loggerhead sea turtles (Caretta caretta) from Canary Islands, and 205 adult nesting loggerheads from Cape Verde. All the 367 samples showed detectable values of some type of PAH. Phenanthrene was the PAH most frequently detected and at the highest concentration in both populations. Median concentrations of ∑PAHs in the plasma of loggerheads from the Canary Islands and Cape Verde were similar (5.5 and 4.6ng/ml, respectively). Di- and tri-cyclic PAHs were predominant in both populations suggesting petrogenic origin rather than urban sources of PAHs. In the group of turtles from Canary Islands, there was evident an increasing level of contamination over the last few years. The present study represents the first data of contamination by PAHs in sea turtles from the studied areas.  相似文献   

13.
Seawater samples (including surface water and bottom water) were collected from the Western Taiwan Strait (WTS) during June 24-25, 2009; polycyclic aromatic hydrocarbons (PAHs) in dissolved phase and particulate phase were analyzed, respectively. The results showed that the total concentrations of PAHs in the dissolved phase and particulate phase were ranged from 12.3 to 58.0 ng L(-1), and 10.3-45.5 ng L(-1), which showed a low-middle contamination level in the China Seas. The spatial variability of PAHs may be related to the complicated currents of WTS, especially the Min-Zhe coastal current. PAHs diagnostic ratios suggested that PAHs mainly originated from the inputs of pyrolytic (combustion) sources, which might be contributed to land-based atmospheric deposition. The particle-water partition coefficients of individual PAH showed that partitions were not correlated with suspended particulate matter content, dissolved organic carbon or salinity, similar to the Yangtze coastal area.  相似文献   

14.
The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m×10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2135 ng g−1, and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2135 (30 days) to 1196 ng g−1 (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3–0.4).  相似文献   

15.
After the Hebei Spirit oil spill incident (7th December, 2007) in the west coast of Korea, contamination of biliary PAH metabolite and hepatic biomarkers in a pelagic and a benthic fish was monitored for 1 year. Concentrations of 16 PAHs and alkylated PAHs in fish muscle were highest (22.0 ng/g d.w. for 16 PAHs and 284 ng/g d.w. for alkylated PAHs) at 5 days after the spill and then decreased rapidly to background levels at 11 months after the spill. Fish from the oiled site had elevated biliary PAH metabolite concentrations immediately after the spill; these declined steadily in both species, but were still above reference site concentrations 2 months after the spill. Oiled-site fish showed hepatic CYP 1A induction whose trend closely followed those of biliary PAH metabolite concentrations, implying continuous exposure to PAHs. Brain acetylcholinesterase activity was not related to oil exposure.  相似文献   

16.
To understand the spatial variation in concentrations and compositions of organic micropollutants in marine plastic debris and their sources, we analyzed plastic fragments (∼10 mm) from the open ocean and from remote and urban beaches. Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dichloro-diphenyl-trichloroethane and its metabolites (DDTs), polybrominated diphenyl ethers (PBDEs), alkylphenols and bisphenol A were detected in the fragments at concentrations from 1 to 10,000 ng/g. Concentrations showed large piece-to-piece variability. Hydrophobic organic compounds such as PCBs and PAHs were sorbed from seawater to the plastic fragments. PCBs are most probably derived from legacy pollution. PAHs showed a petrogenic signature, suggesting the sorption of PAHs from oil slicks. Nonylphenol, bisphenol A, and PBDEs came mainly from additives and were detected at high concentrations in some fragments both from remote and urban beaches and the open ocean.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) in sediment from Auckland Harbour (New Zealand) are not distributed evenly throughout bulk sediment, but highly concentrated in coarser, low-density fractions. Concentrations of 24 PAHs, measured in sediment that was separated into six size fractions that were furthermore separated into two density sub-fractions by flotation in sodium-polytungstate solution (rho = 2.15 g cm(-3)), varied between 4-103 microg g(-1)dw among grain size fractions and 2-998 microg g(-1)dw for density sub-fractions. Highest PAH concentrations were measured in the low density, 125-250 microm fraction. All sediment fractions had a similar relative PAH composition, dominated by >3-ring PAHs, suggesting a common pyrogenic origin. Low density material had 10-200 times higher PAH concentrations and 10-100 times higher organic carbon (OC) content, yet differences in OC content only partially accounted for variations in PAH concentration. Low density particles contributed more than 75% of the Sigma PAH, while comprising only 3% of bulk sediment dry weight. This may have significant utility for contaminant mitigation efforts in Auckland Harbour.  相似文献   

18.
Twelve sediment samples collected from three transects of mangrove swamp of Deep Bay, Shenzhen, China, were determined for polynuclear aromatic hydrocarbons (PAHs). The total PAHs concentrations ranged from 237 to 726 ng g(-1) dry weight, and showed strong correlation with total organic carbon (TOC), clay content and Pb concentrations. The highest PAHs concentrations were found in the samples from mangrove sediments. Overall, PAHs in Deep Bay sediment were lower than those in other developed areas. The biological effect due to PAHs alone in Deep Bay is expected to be low, based on the comparisons of individual and total PAHs concentrations determined in the sediment with those in USEPA sediment quality guidelines. Four and five-ring compounds dominated the PAHs composition pattern profiles. Principal component analysis (PCA) was applied to further investigate the source of PAHs. The PAH sources of Deep Bay mangrove swamp were suggested to be primarily combustion of fossil fuel, especially leaded-gasoline exhaust.  相似文献   

19.
This study measured concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the East China Sea (ECS) to investigate possible sources and fate of PAHs. Total concentration of PAHs in the sediments of the ECS ranged from 22 to 244 ng g(-1), with the highest levels in the coastal area and outer shelf. The observed PAH results showed elevated levels in both inner and outer shelf areas, a finding that is different from predictions by an ocean circulation model, suggesting that terrestrial sources are important for PAH contaminations in the ECS, while sediment resuspension, tidal changes and lateral transport may be important in affecting the distribution of PAHs in the outer shelf. The distribution of PAHs in the surface sediments of the ECS is similar to the distribution of carbonaceous materials (e.g., particulate organic carbon and black carbon), suggesting that carbonaceous materials may strongly affect the distribution of PAHs.  相似文献   

20.
《Marine pollution bulletin》2012,64(5-12):464-470
This study measured concentrations of polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the East China Sea (ECS) to investigate possible sources and fate of PAHs. Total concentration of PAHs in the sediments of the ECS ranged from 22 to 244 ng g−1, with the highest levels in the coastal area and outer shelf. The observed PAH results showed elevated levels in both inner and outer shelf areas, a finding that is different from predictions by an ocean circulation model, suggesting that terrestrial sources are important for PAH contaminations in the ECS, while sediment resuspension, tidal changes and lateral transport may be important in affecting the distribution of PAHs in the outer shelf. The distribution of PAHs in the surface sediments of the ECS is similar to the distribution of carbonaceous materials (e.g., particulate organic carbon and black carbon), suggesting that carbonaceous materials may strongly affect the distribution of PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号