首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for 'tuning' at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies [2, 3].  相似文献   

2.
The environmental effects of blasting must be controlled in order to comply with regulatory limits. Because of safety concerns and risk of damage to infrastructures, equipment, and property, and also having a good fragmentation, flyrock control is crucial in blasting operations. If measures to decrease flyrock are taken, then the flyrock distance would be limited, and, in return, the risk of damage can be reduced or eliminated. This paper deals with modeling the level of risk associated with flyrock and, also, flyrock distance prediction based on the rock engineering systems (RES) methodology. In the proposed models, 13 effective parameters on flyrock due to blasting are considered as inputs, and the flyrock distance and associated level of risks as outputs. In selecting input data, the simplicity of measuring input data was taken into account as well. The data for 47 blasts, carried out at the Sungun copper mine, western Iran, were used to predict the level of risk and flyrock distance corresponding to each blast. The obtained results showed that, for the 47 blasts carried out at the Sungun copper mine, the level of estimated risks are mostly in accordance with the measured flyrock distances. Furthermore, a comparison was made between the results of the flyrock distance predictive RES-based model, the multivariate regression analysis model (MVRM), and, also, the dimensional analysis model. For the RES-based model, R 2 and root mean square error (RMSE) are equal to 0.86 and 10.01, respectively, whereas for the MVRM and dimensional analysis, R 2 and RMSE are equal to (0.84 and 12.20) and (0.76 and 13.75), respectively. These achievements confirm the better performance of the RES-based model over the other proposed models.  相似文献   

3.
Drought over a period threatens the water resources, agriculture, and socioeconomic activities. Therefore, it is crucial for decision makers to have a realistic anticipation of drought events to mitigate its impacts. Hence, this research aims at using the standardized precipitation index (SPI) to predict drought through time series analysis techniques. These adopted techniques are autoregressive integrating moving average (ARIMA) and feed-forward backpropagation neural network (FBNN) with different activation functions (sigmoid, bipolar sigmoid, and hyperbolic tangent). After that, the adequacy of these two techniques in predicting the drought conditions has been examined under arid ecosystems. The monthly precipitation data used in calculating the SPI time series (SPI 3, 6, 12, and 24 timescales) have been obtained from the tropical rainfall measuring mission (TRMM). The prediction of SPI was carried out and compared over six lead times from 1 to 6 using the model performance statistics (coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE)). The overall results prove an excellent performance of both predicting models for anticipating the drought conditions concerning model accuracy measures. Despite this, the FBNN models remain somewhat better than ARIMA models with R?≥?0.7865, MAE?≤?1.0637, and RMSE?≤?1.2466. Additionally, the FBNN based on hyperbolic tangent activation function demonstrated the best similarity between actual and predicted for SPI 24 by 98.44%. Eventually, all the activation function of FBNN models has good results respecting the SPI prediction with a small degree of variation among timescales. Therefore, any of these activation functions can be used equally even if the sigmoid and bipolar sigmoid functions are manifesting less adjusted R2 and higher errors (MAE and RMSE). In conclusion, the FBNN can be considered a promising technique for predicting the SPI as a drought monitoring index under arid ecosystems.  相似文献   

4.
Ground vibration resulting from blasting is one of the most important environmental problems at open-cast mines. Therefore, accurately approximating the blast-induced ground vibration is very significant. By reviewing the previous investigations, many attempts have been done to create the empirical models for estimating ground vibration. Nevertheless, the performance of the empirical models is not good enough. In this research work, a new hybrid model of fuzzy system (FS) designed by imperialistic competitive algorithm (ICA) is proposed for approximating ground vibration resulting from blasting at Miduk copper mine, Iran. For comparison aims, various empirical models were also utilized. Results from different predictor models were compared by using coefficient of multiple determination (R 2), variance account for and root-mean-square error between measured and predicted values of the PPVs. Results prove that the FS–ICA model outperforms the other empirical models in terms of the prediction accuracy. In other words, the FS–ICA model with R 2 of 0.942 can forecast PPV better than the USBM with R 2 of 0.634, Ambraseys–Hendron with R 2 of 0.638, Langefors–Kihlstrom with R 2 of 0.637 and Indian Standard with R 2 of 0.519.  相似文献   

5.
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation (R 2) and root mean square error (RMSE) of the model were calculated (R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.  相似文献   

6.
Ground vibration is one of the common environmental effects of blasting operation in mining industry, and it may cause damage to the nearby structures and the surrounding residents. So, precise estimation of blast-produced ground vibration is necessary to identify blast-safety area and also to minimize environmental effects. In this research, a hybrid of adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) was proposed to predict blast-produced ground vibration in Pengerang granite quarry, Malaysia. For this goal, 81 blasting were investigated, and the values of peak particle velocity, distance from the blast-face and maximum charge per delay were precisely measured. To demonstrate the performance of the hybrid PSO–ANFIS, ANFIS, and United States Bureau of Mines empirical models were also developed. Comparison of the predictive models was demonstrated that the PSO–ANFIS model [with root-mean-square error (RMSE) 0.48 and coefficient of determination (R 2) of 0.984] performed better than the ANFIS with RMSE of?1.61 and R 2 of 0.965. The mentioned results prove the superiority of the newly developed PSO–ANFIS model in estimating blast-produced ground vibrations.  相似文献   

7.
Forest stand biomass serves as an effective indicator for monitoring REDD (reducing emissions from deforestation and forest degradation). Optical remote sensing data have been widely used to derive forest biophysical parameters inspite of their poor sensitivity towards the forest properties. Microwave remote sensing provides a better alternative owing to its inherent ability to penetrate the forest vegetation. This study aims at developing optimal regression models for retrieving forest above-ground bole biomass (AGBB) utilising optical data from Landsat TM and microwave data from L-band of ALOS PALSAR data over Indian subcontinental tropical deciduous mixed forests located in Munger (Bihar, India). Spatial biomass models were developed. The results using Landsat TM showed poor correlation (R2 = 0.295 and RMSE = 35 t/ha) when compared to HH polarized L-band SAR (R2 = 0.868 and RMSE = 16.06 t/ha). However, the prediction model performed even better when both the optical and SAR were used simultaneously (R2 = 0.892 and RMSE = 14.08 t/ha). The addition of TM metrics has positively contributed in improving PALSAR estimates of forest biomass. Hence, the study recommends the combined use of both optical and SAR sensors for better assessment of stand biomass with significant contribution towards operational forestry.  相似文献   

8.
Accurate and reliable prediction of shallow groundwater level is a critical component in water resources management. Two nonlinear models, WA–ANN method based on discrete wavelet transform (WA) and artificial neural network (ANN) and integrated time series (ITS) model, were developed to predict groundwater level fluctuations of a shallow coastal aquifer (Fujian Province, China). The two models were testified with the monitored groundwater level from 2000 to 2011. Two representative wells are selected with different locations within the study area. The error criteria were estimated using the coefficient of determination (R 2), Nash–Sutcliffe model efficiency coefficient (E), and root-mean-square error (RMSE). The best model was determined based on the RMSE of prediction using independent test data set. The WA–ANN models were found to provide more accurate monthly average groundwater level forecasts compared to the ITS models. The results of the study indicate the potential of WA–ANN models in forecasting groundwater levels. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.  相似文献   

9.
This study addresses the effects of rock characteristics and blasting design parameters on blast-induced vibrations in the Kangal open-pit coal mine, the Tülü open-pit boron mine, the K?rka open-pit boron mine, and the TKI Çan coal mine fields. Distance (m, R) and maximum charge per delay (kg, W), stemming (m, SB), burden (m, B), and S-wave velocities (m/s, Vs) obtained from in situ field measurements have been chosen as input parameters for the adaptive neuro-fuzzy inference system (ANFIS)-based model in order to predict the peak particle velocity values. In the ANFIS model, 521 blasting data sets obtained from four fields have been used (r 2 = 0.57–0.81). The coefficient of ANFIS model is higher than those of the empirical equation (r 2 = 1). These results show that the ANFIS model to predict PPV values has a considerable advantage when compared with the other prediction models.  相似文献   

10.
A new site-specific vibration prediction equation was developed based on site measurement performed in a sandstone quarry. Also, several vibration prediction equations were compiled from the blasting literature and used to predict ground vibration for the studied quarry. By this way, site-specific equation created by regression analysis and the equations obtained from the blasting literature were compared in terms of prediction accuracy. Some of the equations obtained from the literature made better predictions than the site-specific equation created for the studied quarry. The prediction equations were grouped, and the effects of the rock formation and mine type on the prediction accuracy were investigated. Suitable error measures for evaluation of ground vibration prediction were examined in detail. A new general prediction equation was created using site factors (K, β) of the examined studies. The general equation was created using 17 prediction equations reported by blast researchers. Prediction capability of the general equation was found to be strong. Diversity of the blast data is one of the strongest features of the general equation.  相似文献   

11.
Soil saturated hydraulic conductivity (Ks) is considered as soil basic hydraulic property, and its precision estimation is a key element in modeling water flow and solute transport processes both in the saturated and vadose zones. Although some predictive methods (e.g., pedotransfer functions, PTFs) have been proposed to indirectly predict Ks, the accuracy of these methods still needs to be improved. In this study, some easily available soil properties (e.g., particle size distribution, organic carbon, calcium carbonate content, electrical conductivity, and soil bulk density) are employed as input variables to predict Ks using a fuzzy inference system (FIS) trained by two different optimization techniques: particle swarm optimization (PSO) and genetic algorithm (GA). To verify the derived FIS, 113 soil samples were taken, and their required physical properties were measured (113 sample points?×?7 factors?=?791 input data). The initial FIS is compared with two methods: FIS trained by PSO (PSO-FIS) and FIS trained by GA (GA-FIS). Based on experimental results, all three methods are compared according to some evaluation criteria including correlation coefficient (r), modeling efficiency (EF), coefficient of determination (CD), root mean square error (RMSE), and maximum error (ME) statistics. The results showed that the PSO-FIS model achieved a higher level of modeling efficiency and coefficient of determination (R2) in comparison with the initial FIS and the GA-FIS model. EF and R2 values obtained by the developed PSO-FIS model were 0.69 and 0.72, whereas they were 0.63 and 0.54 for the GA-FIS model. Moreover, the results of ME and RMSE indices showed that the PSO-FIS model can estimate soil saturated hydraulic conductivity more accurate than the GA-FIS model with ME?=?10.4 versus 11.5 and RMSE?=?5.2 versus 5.5 for PSO-FIS and GA-FIS, respectively.  相似文献   

12.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

13.
In this paper, analytical methods, artificial neural network (ANN) and multivariate adaptive regression splines (MARS) techniques were utilised to estimate the discharge capacity of compound open channels (COC). To this end, related datasets were collected from literature. The results showed that the divided channel method with a coefficient of determination (R 2) value of 0.76 and root mean square error (RMSE) value of 0.162 has the best performance, among the various analytical methods tested. The performance of applied soft computing models with R 2=0.97 and RMSE = 0.03 was found to be more accurate than analytical approaches. Comparison of MARS with the ANN model, in terms of developed discrepancy ratio (DDR) index, showed that the accuracy of MARS model was better than that of MLP model. Reviewing the structure of the derived MARS model showed that the longitudinal slope of the channel (S), relative flow depth (H r ) and relative area (A r ) have a high impact on modelling and forecasting the discharge capacity of COCs.  相似文献   

14.
Circular failure is generally observed in the slope of soil, highly jointed rock mass, mine dump and weak rock. Accurate estimation of the safety factor (SF) of slopes and their performance is not an easy task. In this research, based on rock engineering systems (RES), a new approach for the estimation of the SF is presented. The introduced model involves six effective parameters on SF [unit weight (γ), pore pressure ratio (r u), height (H), angle of internal friction (φ), cohesion (C) and slope angle (\(\beta\))], while retaining simplicity as well. In the case of SF prediction, all the datasets were divided randomly to training and testing datasets for proposing the RES model. For comparison purposes, nonlinear multiple regression models were also employed for estimating SF. The performances of the proposed predictive models were examined according to two performance indices, i.e., coefficient of determination (R 2) and mean square error. The obtained results of this study indicated that the RES is a reliable method to predict SF with a higher degree of accuracy in comparison with nonlinear multiple regression models.  相似文献   

15.
Empirical approaches for predicting fragmentation from blasting continue to play a significant role in the mining industry in spite of a number of inherent limitations associated with such methods. These methods can be successfully applied provided the users understand or recognize their limitations. Arguably, the most successful empirical based fragmentation models have been those applicable to surface blasting (e.g., Kuz-Ram/Kuznetsov based models). With widespread adoption of fragmentation assessment technologies in underground operations, an opportunity has arisen to extend and further develop these type approaches to underground production blasting.

This paper discusses the development of a new fragmentation modelling framework for underground ring blasting applications. The approach is based on the back-analysis of geotechnical, blasting and fragmentation data gathered at the Ridgeway sub level caving (SLC) operation in conjunction with experiences from a number of surface blasting operations.

The basis of the model are, relating a peak particle velocity (PPV) breakage threshold to a breakage uniformity index; modelling of the coarse end of the size distribution with the Rosin-Rammler distribution; and modelling the generation of fines with a newly developed approach that allows the prediction of the volume of crushing around blastholes.

Preliminary validations of the proposed model have shown encouraging results. Further testing and validation of the proposed model framework continues and the approach is currently being incorporated into an underground blast design and analysis software to facilitate its application.  相似文献   

16.
Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.  相似文献   

17.
Because of economic and technical limitations, measuring solar energy received at ground level (R s ) isn’t possible in all parts of the country, and in only 12% of synoptic stations is this parameter measured and recorded. Thus, it should be estimated and modeled spatially based on other climatic variables using mathematical methods. In this research, many attempts have been made to introduce an air temperature-based model for Rs estimation, and then, based on the output of the mentioned models, several geostatistical methods have been tested, and finally an elegant spatial model is proposed for (Rs) zoning in Iran. In this regard, the relationships between the measured amounts of monthly solar radiation and other climatic parameters, such as a monthly average, maximum and minimum temperature, precipitation, relative humidity, and the number of sunny hours during the period 1970–2010, are examined and modeled. It was revealed that based on the linear relationship between the monthly average air temperatures and solar radiation values recorded in each of the stations, that the best-fit linear model, with R 2  = 0.822, MAE = 1.81, RMSE = 2.51%, and MAPE = 10.08, can be introduced for Rs estimation. Then, using the outputs of the proposed model, the amounts of (R s ) are estimated in another 171 meteorological stations (a total of 192 stations), and eight geostatistical methods (IDW, GPI, RBF, LPI, OK, SK, UK, and EBK) were investigated for zoning. Comparing the resulting variograms showed that in addition to proof of spatial correlation between solar radiation data, they can be applied for modeling changes in various directions. Analyzing the ratio of the nugget effect on the roof of the variograms showed that the Gaussian model with the lowest ratio (Co/Co + C = 0.883) and (R 2  = 0.972), could model the highest correlation between the data and, therefore, it was used for data interpolation. To select the best geostatistical model, R2, MAE, and RMSE were used. On this basis, it was found that the RBF method with R 2  = 0.904, MAE = 3.02, RMSE = 0.39% is the most effective. Also, the IDW method with R 2  = 0.90, MAE = 3.08, RMSE = 0.391%, compared to other methods is the most effective. In addition, for data validation, correlations between observed and estimated values of solar radiation were studied and found R 2  = 0.86.  相似文献   

18.
Deep excavation during the construction of underground systems can cause movement on the ground, especially in soft clay layers. At high levels, excessive ground movements can lead to severe damage to adjacent structures. In this study, finite element analyses (FEM) and the hardening small strain (HSS) model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations. Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays. Accordingly, 1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior. The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network (FLNN) with different functional expansions and activation functions. Although the FLNN is a novel approach to predict wall deflection; however, in order to improve the accuracy of the FLNN model in predicting wall deflection, three swarm-based optimization algorithms, such as artificial bee colony (ABC), Harris’s hawk’s optimization (HHO), and hunger games search (HGS), were hybridized to the FLNN model to generate three novel intelligent models, namely ABC-FLNN, HHO-FLNN, HGS-FLNN. The results of the hybrid models were then compared with the basic FLNN and MLP models. They revealed that FLNN is a good solution for predicting wall deflection, and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection. It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error (MAE) of 19.971, root-mean-squared error (RMSE) of 24.574, and determination coefficient (R2) of 0.878. Meanwhile, the performance of the MLP model only obtained an MAE of 20.321, RMSE of 27.091, and R2 of 0.851. Furthermore, the results also indicated that the proposed hybrid models, i.e., ABC-FLNN, HHO-FLNN, HGS-FLNN, yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239, RMSE in the range of 15.821 to 16.045, and R2 in the range of 0.949 to 0.951. They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.  相似文献   

19.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

20.
Soil erodibility is one of the most important factors used in spatial soil erosion risk assessment. Soil information derived from soil map is used to generate soil erodibility factor map. Soil maps are not available at appropriate scale. In general, soil maps at small scale are used in deriving soil erodibility map that largely generalized spatial variability and it largely ignores the spatial variability since soil map units are discrete polygons. The present study was attempted to generate soil erodibilty map using terrain indices derived from DTM and surface soil sample data. Soil variability in the hilly landscape is largely controlled by topography represented by DTM. The CartoDEM (30 m) was used to derive terrain indices such as terrain wetness index (TWI), stream power index (SPI), sediment transport index (STI) and slope parameters. A total of 95 surface soil samples were collected to compute soil erodibility factor (K) values. The K values ranged from 0.23 to 0.81 t ha?1R?1 in the watershed. Correlation analysis among K-factor and terrain parameters showed highest correlation of soil erodibilty with TWI (r 2= 0.561) followed by slope (r 2= 0.33). A multiple linear regression model was developed to derive soil erodibilty using terrain parameters. A set of 20 soil sample points were used to assess the accuracy of the model. The coefficient of determination (r 2) and RMSE were computed to be 0.76 and 0.07 t ha?1R?1 respectively. The proposed methodology is quite useful in generating soil erodibilty factor map using digital elevation model (DEM) for any hilly terrain areas. The equation/model need to be established for the particular hilly terrain under the study. The developed model was used to generate spatial soil erodibility factor (K) map of the watershed in the lower Himalayan range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号