首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多变量干旱事件识别与频率计算方法   总被引:1,自引:0,他引:1       下载免费PDF全文
干旱持续时间久、影响范围大,时空连续性是干旱的基本特征,以往研究大多考虑单变量或双变量。通过给定阈值识别干旱斑块和判断两相邻时间干旱的连续性,提出了时空连续的干旱事件三维识别方法,用干旱历时、干旱面积、干旱烈度、干旱强度和干旱中心位置5个特征变量对一场干旱事件进行度量;提出了基于Copula函数的干旱历时-面积-烈度三变量频率分析方法。以中国西南地区为例,采用SPI(Standard Precipitation Index)干旱指标识别了近52年发生历时等于或大于3个月的干旱事件,一共78场,其中2009年8月至2010年6月最严重干旱事件的重现期为94年一遇。通过比较概率分布函数和Copula函数,表明在干旱频率分析时需要考虑干旱历时、面积、烈度3个特征变量。  相似文献   

2.
A simple, physically based method is developed in this paper to assist in the allocation of areas with high groundwater potential and for the determination of maximum allowed pumping rate to ensure proper groundwater management. This method utilizes the aquifer physical properties as well as GIS technology to accomplish this purpose. The design of this method was considered to be applicable in areas with little data, such as in most arid regions. This technique was applied to a catchment in an arid environment where qualitative as well as quantitative analyses of the results were undertaken. Locations of available groundwater and rates of maximum allowable pumping were compared with observations and experiments in the field and a good agreement was found. It was concluded that the best groundwater location was in the alluvial area, which represents only 16% of the total aquifer, which is a typical case in arid region catchments. The rate of maximum pumping was estimated to be 65 m3/h. However, to benefit 55% of the area, the maximum pumping rate should only be 40 m3/h with an average rate throughout the area (55%) of about 24 m3/h.This revised version was published online in December 2004 with corrections to the category.  相似文献   

3.
干旱区凝结水研究进展   总被引:5,自引:0,他引:5  
凝结水是维系干旱、半干旱地区主要食物链的水分来源之一,具有重要的生态意义。较详细地列举了目前国内外在干旱区测定凝结量及其持续时间所采用的研究方法,从凝结水的数量特征以及时间格局两方面阐述了不同地域凝结水的时空差异性,并从气象因素、凝结面的类型及其位置、周边植被对其作用等方面综合分析了影响凝结水发生的主要因素,探讨了干旱区凝结水的生态作用及其意义,展望了干旱区凝结水未来的研究趋势。提出在未来的干旱区凝结水研究中应加强与气象学、生态学等多学科的交叉,从能量平衡角度加强对凝结水量的研究;同时,改进和规范凝结水的测量方法,开展荒漠植被对凝结水的生理响应研究以及凝结水对极端干旱胁迫植物的作用研究。  相似文献   

4.
《China Geology》2021,4(3):410-420
Quantitative assessment of the impact of groundwater depletion on phreatophytes in (hyper-) arid regions is key to sustainable groundwater management. However, a parsimonious model for predicting the response of phreatophytes to a decrease of the water table is lacking. A variable saturated flow model, HYDRUS-1D, was used to numerically assess the influences of depth to the water table (DWT) and mean annual precipitation (MAP) on transpiration of groundwater-dependent vegetation in (hyper-) arid regions of northwest China. An exponential relationship is found for the normalized transpiration (a ratio of transpiration at a certain DWT to transpiration at 1 m depth, Ta*) with increasing DWT, while a positive linear relationship is identified between Ta* and annual precipitation. Sensitivity analysis shows that the model is insensitive to parameters, such as saturated soil hydraulic conductivity and water stress parameters, indicated by an insignificant variation (less than 20% in most cases) under ± 50% changes of these parameters. Based on these two relationships, a universal model has been developed to predict the response of phreatophyte transpiration to groundwater drawdown for (hyper-) arid regions using MAP only. The estimated Ta* from the model is reasonable by comparing with published measured values.© 2021 China Geology Editorial Office.  相似文献   

5.
Rainfall distribution patterns (RDPs) are crucial for hydrologic design. Hydrologic modeling is based on Soil Conservation Services (SCS) type RDPs (SCS type I, IA, II, and III). SCS type II method is widely used by hydrologists in arid regions. These RDPs were designed for the USA and similar temperate regions. There is no scientific justification for using SCS type II method in arid regions. The consequences of using SCS type II have impacts on the hydrologic and hydraulic modeling studies. The current paper investigates the validity of the SCS type II and in arid regions. New temporal RDPs were applied and compared with SCS type II RDPs. The produced peak discharges, volumes, maximum inundation depths, top widths, and velocities from both approaches were analyzed. An application is made on the protection channel in Taibah and Islamic Universities campuses in Medina, Saudi Arabia. A methodology was followed which included frequency analysis, catchment modeling, hydrological modeling, and hydraulic modeling. Results indicated that there are considerable consequences on infrastructural design, and hydrologic and hydraulic parameters if inappropriate RDPs are used. The investigation confirmed that the SCS type RDPs do not reflect the actual flood features in arid regions.  相似文献   

6.
基于曙光3000计算环境的寒旱区资源环境数据平台建设   总被引:2,自引:0,他引:2  
通过对寒区旱区资源环境研究中已积累的大量特色数据、应用模式和程序的分析,对分布式网络环境中的数据采集与管理、应用模式和程序的移植集成、应用程序与数据的交互访问等技术进行了讨论,提出建立由数据中心、中间件服务、应用服务、一站式管理组成的数据平台是提高数据利用效率,方便实现数据与应用集成,提高科研效率的一种有效途径之一.对数据平台建设的主要思路及实现技术进行了详细讨论,并在实验基础上,初步建立了基于曙光3000高性能计算环境的寒区旱区资源环境数据平台,为以后的数据网格建设做了一定的技术准备.  相似文献   

7.
Precise spatial estimation of ore grades and impurity contents from sample data limited in amount and location is indispensable to metallic and nonmetallic resource exploration. One of the advantages of using geostatistics for this purpose is that it can incorporate multivariate data into spatial estimation of one variable. However, there are two weak points concerning technical and post-processing problems. First is the difficulty in application to geologic data in which spatial correlations are not clear because of intrinsic nonlinear behavior. Second is the absence of indices to interpret the mechanisms and factors which govern the spatial distribution. To address these problems, a spatial method of modeling based on a feedforward neural network, SLANS, which recognizes the relationship between the data value and location by considering supplementary attributes such as lithology and biostratigraphy, and a sensitivity analysis using this network were developed. These methods were applied to two case studies, genetic mechanisms of kuroko deposits and quality assessment of a limestone mine. The first case study is a spatial analysis of principal metals of kuroko deposits (volcanogenic massive sulfide deposits) in the Hokuroku district, northern Japan. It was clarified that upward and downward sensitivity vectors were distinguished near the deposits inside and outside the tectonic basin, respectively. Sensitivity analysis for the second case study showed a strong effect of crystalline limestone on the important impurity, P2O5 contents. Hydrothermal alteration, which could cause leaching and secondary concentration of phosphorus, is considered to have produced this effect.  相似文献   

8.
Qom is the eighth most populated city in center of Iran, and its population growth rate is among the highest in this country. Th presence of a Great Salt Lake, petroleum potential and tourism attractions in this city sheds light on the importance of how solid waste landfill locations should be disposed, located and managed as an environmental issue. Considering the key parameters in landfill site selection, in this study a series of location analysis have been conducted to locate optimum regions for municipal solid waste disposal, using analytical hierarchy process (AHP) and geographical information system (GIS). The main factors in selecting the suitable location for waste disposal include geomorphology–hydrography, environmental–social factors and design criteria, each of which are subdivided into several categories. Criteria are selected according to the regional condition; therefore, important factors such as distance from sea and forested areas were not considered. In the next step, digital layers are weighted and classified according to the available standards and expert judgment. Then, analytical multi-criteria decision-making algorithms as AHP and weighted linear combination are applied upon existing layers in GIS. The results show that by implementing the AHP method in this region only 7% of the study area has a very good and appropriate condition for landfill location and the field observation confirms them. Finally, considering the environmental effects of landfill, appropriate locations are suggested.  相似文献   

9.
In this study analytical hierarchy process approach which uses expert’s knowledge, was applied for selection of the best wastewater treatment alternative for electroplating workshops, located in Tehran province, Iran. This method can be applied for complicated multi-criteria decision making to obtain scientific and reasonable results. Four wastewater treatment alternatives including reverse osmosis, nano filtration, ion exchange, and chemical precipitation were evaluated and ranked based on economical, technical, environmental/ social aspects. Each criterion includes different indices such as land area, capital cost, sludge disposal issues, operating and maintenance, local suppliers and warranty, system flexibility, required skilled and non skilled man power safety, and etc. The results showed that reverse osmosis achieved the maximum general profits and can be the best choice. Sensitivity analysis can shows the effect of inputs parameters change on the results. Sensitivity analysis was applied for each criterion. The results illustrated that for economic and technical criterion, chemical precipitation and for environment criterion, reverse osmosis were qualified.  相似文献   

10.
A case study is presented to assess the relevance of geomorphology in hydrogeological phenomena in an arid coastal area in the Argentinean extra-Andean Patagonia (Península Valdés) with an average rainfall of 232 mm/year and a soil moisture deficit of about 472 mm/year. Various geomorphic units were identified by interpreting Landsat 7 satellite images processed with ER Mapper software and then surveyed in the field, as well as by geological characterization. The hydrodynamic analysis was based on a survey of 89 wells, the construction of equipotential maps, and the interpretation of pumping-test results by a non-equilibrium method. The hydrochemical characterization was based on chemical tests analyzed with the Easy_Quim 6.0 application. The combination of geomorphological, geological, hydrodynamic and hydrochemical elements allowed the definition of hydromorphological units that are typical of recharge, circulation and discharge areas, the latter both for coastal and inland areas in wetlands (salt pans) with elevations to ?40 m relative to sea level. These units and the criteria used for their definition allow immediate recognition of hydrogeological phenomena in arid regions such as the extra-Andean Patagonia, with low information density but with near-optimal satellite imaging of landforms due to the lack of vegetation cover.  相似文献   

11.
Geotechnical engineering practice for collapsible soils   总被引:3,自引:0,他引:3  
Conditions in arid and semi-arid climates favor the formation of the most problematic collapsible soils. The mechanisms that account for almost all naturally occurring collapsible soil deposits are debris flows, rapid alluvial depositions, and wind-blown deposits (loess). Collapsible soils are moisture sensitive in that increase in moisture content is the primary triggering mechanism for the volume reduction of these soils. One result of urbanization in arid regions is an increase in soil moisture content. Therefore, the impact of development-induced changes in surface and groundwater regimes on the engineering performance of moisture sensitive arid soils, including collapsible soils, becomes a critical issue for continued sustainable population expansion into arid regions.In practicing collapsible soils engineering, geotechnical engineers are faced with (1) identification and characterization of collapsible soil sites, (2) estimation of the extent and degree of wetting, (3) estimation of collapse strains and collapse settlements, and (4) selection of design/mitigation alternatives. Estimation of the extent and degree of wetting is the most difficult of these tasks, followed by selection of the best mitigation alternative.  相似文献   

12.
The shortage of surface water in arid and semiarid regions has led to the more use of the groundwater resources. In these areas, the groundwater is essential for activities such as water supply and irrigation. One of the most important stages in sustainable yield of groundwater resources is awareness of groundwater level. In this study, we have applied artificial neural networks (ANN) and autoregressive integrated moving average (ARIMA) models for groundwater level forecasting to 4 months ahead in Shiraz basin, southwestern Iran. Time series analysis was conducted according to the Box–Jenkins method. Meanwhile, gamma and M-test were considered for determining the optimal input combination and length of training and testing data in the ANN model. The results indicated that performance of multilayer perceptron neural network (4, 14, 1) and ARIMA (2, 1, 2) is satisfactory in the groundwater level forecasting for one month ahead. The performance comparison shows that the ARIMA model performs appreciably better than the ANN.  相似文献   

13.
同位素技术在寒旱区水科学中的应用进展   总被引:6,自引:2,他引:4  
近20a来,同位素技术作为一种新技术在寒区旱区水科学研究中得到越来越广泛的应用.中国学者在大气降水稳定同位素,干旱区地下水起源,盐湖中氯、硼、锂等同位素的应用研究中取得了较大进展,在寒区旱区同位素剖面的建立和古地理、古环境演化信息的提取上得到了一系列重要的成果,还对蒸发过程的同位素分馏理论进行了探索和发展.随着科技的发展和同位素应用水平的提高,同位素技术还将在寒区旱区水科学中取得更大进展.  相似文献   

14.
以中国寒区旱区特有的自然背景为研究基础,将40多年针对寒区旱区自然资源、生态环境、工程建设、经济建设等研究中积累的大量的特色数据进行分类。从方便数据采集和数据应用出发,将专业特色数据以关系数据、空间数据、二进制数据和文本数据的形式分三级数据库群结构组建成寒区旱区资源环境研究特色数据集。从共享机制和共享技术两方面对数据共享的几个主要因素进行了说明。同时就如何在以高性能计算和网络为核心开展深层次的数据服务方面,从数据平台建设、基于Web的远程计算和数据网格3个方面进行了尝试。  相似文献   

15.
陈伟涛  孙自永  王焰新  马瑞 《地球科学》2014,39(9):1340-1348
地下水资源在内陆干旱区具有重要的植被生态功能, 依赖地下水的植被生态系统的需水量是目前流域水资源综合管理的重要组成部分.在分析地下水资源生态功能研究进展的同时, 系统阐述了内陆干旱区依赖地下水的植被生态需水量研究的几个关键科学问题: ①依赖地下水的植被生态系统的识别方法; ②地下水对植被生态系统作用机制的分析; ③地下水关键属性安全界限的确定; ④地下水系统结构分析; ⑤生态用水配置方案的确定; ⑥区域尺度地下水-天然植被系统关系的概念模型.并逐一提出了这些问题的解决方案, 能够为干旱区植被生态系统保护和恢复提供思路, 也能够为水资源开发利用与以植被生态系统保护为中心的干旱区生态文明建设提供地学支撑.   相似文献   

16.
The ecological environment in arid areas is extremely fragile and especially sensitive to climate response. Continuous research on the climate and its impact mechanism in the arid zones is of great scientific significance for deeper understanding of the cause of climatic formation and better prediction of climate in arid regions. Some research progresses in recent decades both at home and abroad have been overviewed, including the distribution of arid areas, the causes of arid area climatic formation and arid area climate change. Studies have shown that AI index is an effective criterion for dividing arid areas. There are 8 major arid areas in the world; climatic formation in arid areas is the result of multiple factors; there are 6 kinds of influencing factors, such as Hadley Cell, land-air interaction and so on; the unlikely trend between dry and wet is obvious in arid areas, and some regions are facing more severe drought trends such as North Africa and China-Mongolia, while others show a trend of wetting such as the Midwest of the United States. At present, there are still some scientific problems to be solved urgently:The response of various arid regions to global warming is quite different, and climate prediction in these zones is both important and difficult; the uplift of the Qinghai-Tibet Plateau has a tremendous impact on the arid area of China-Mongolia, but the models of this field are not perfect enough; there are no accepted conclusions about the causes of climatic formation in different arid regions and the causes of their different wet and dry trends. At present, it is still impossible to quantitatively distinguish the relative contributions of various influencing factors in the climate evolution of drylands and their response processes.  相似文献   

17.
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.  相似文献   

18.
Because of scarcity and high variability of rainfall in arid areas, from one hand, reliable prediction of precipitation in such regions is considerably difficult. Furthermore, in some cases, shortage of observation data and several other limitations may intensify complexity of the forecasting. On the other hand, these regions highly suffer from low availability of water which necessitates development of an appropriate modeling approach to provide as precise as possible predictions of precipitation. Artificial neural networks (ANNs) are expected to be a powerful tool in capturing and analyzing high interannual variability of precipitation in arid climates and, subsequently, in proper prediction of precipitation fluctuations in the future. The end of this paper is to improve ANN predictions of precipitation in arid climates using better training of the network. To this end, two approaches were applied. In the first one, just the rainfall monthly data were considered as input. In the second approach, in addition to precipitation, several exogenous variables of precipitation are considered as input to predict precipitation. The chosen exogenous parameters are either effective on or relevant to the precipitation patterns. Then, several lag times, hidden layer sizes, and training algorithms for different running sums are used in order to produce best forecasts. It was shown that the performance of networks increases significantly by importing more external factors as inputs. The bigger time scales also exhibited better performances. In all the five time scales, smaller lag times (especially one month), bigger hidden layer sizes (especially between 31 and 40), and GDX training algorithm presented the best performance. The highest obtained performance was presented by the network with 10 inputs, 1 month lag, 36 hidden layers, and CGF training method in 18 months running sum with R 2 of 0.93.  相似文献   

19.
In arid and semi-arid regions, a close relationship exists between groundwater and supergene eco-environmental issues such as swampiness, soil salinization, desertification, vegetation degradation, reduction of stream base flow, and disappearance of lakes and wetlands. When the maximum allowable withdrawal of groundwater (AWG) is assessed, an ecology-oriented regional groundwater resource assessment (RGRA) method should be used. In this study, a hierarchical assessment index system of the supergene eco-environment was established based on field survey data and analysis of the supergene eco-environment factors influenced by groundwater in the Tuwei River watershed, Shaanxi Province, China. The assessment system comprised 11 indices, including geomorphological type, lithology and structure of the vadose zone, depth of the water table (DWT), total dissolved solids content of groundwater, etc. Weights for all indices were calculated using an analytical hierarchy process. Then, the current eco-environmental conditions were assessed using fuzzy comprehensive evaluation (FCE). Under the imposed constraints, and using both the assessment results on the current eco-environment situation and the ecological constraint of DWT (1.5–5.0 m), the maximum AWG (0.408 × 108 m3/a or 24.29 % of the river base flow) was determined. This was achieved by combining the groundwater resource assessment with the supergene eco-environmental assessment based on FCE. If the maximum AWG is exceeded in a watershed, the eco-environment will gradually deteriorate and produce negative environmental effects. The ecology-oriented maximum AWG can be determined by the ecology-oriented RGRA method, and thus sustainable groundwater use in similar watersheds in other arid and semi-arid regions can be achieved.  相似文献   

20.
Assessing flash flood hazard in an arid mountainous region   总被引:2,自引:1,他引:1  
Although flash floods are one of the major natural disasters that may hamper human development in arid areas, aspects of the process leading to their initiation remain uncertain and poorly understood. In the present study, wadi El-Alam Basin, one of the major basins in the Eastern Desert of Egypt that is frequently subjected to severe flash flood damage, is selected for investigation. Here, a hydrological modeling approach was used to predict flash flood hazard within the basin. Earlier work conducted for the same basin showed that such approach is successful and was able to accurately highlight the locations of historical flood damage. However, such work was based on one set of arbitrary model parameters. The present study has taking into account the rainfall as the excitation factor in the adopted hydrological modeling. The study aims to build on the earlier study by investigating impacts of variation of rainfall depth, areal coverage, and location on flash flood generation. Results demonstrate that the basin under study requires a rainstorm intensity of at least 40 mm in order to initiate surface runoff with a noticeable flood peak at its main outlet. The location of rainstorm has a major effect on the shape of the basin final hydrograph. Furthermore, in the study basin, the upstream flood appears to be of a magnitude and a peak flow that is much higher than those for downstream ones, which believes to be strongly attributed to the surface steepness and impermeability of the former. The used approach shows to be useful in the rapid assessing of flash flood hazard in mountainous desert and could be adopted, with appropriate modifications, elsewhere in arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号