首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The climatic zones where residual soils occur are often characterized by alternate wet and dry seasons. Laboratory studies of earlier workers have established that the alternate wetting and drying process affects the swell-shrink potentials, water content, void ratio and particle cementation of expansive soils. The influence of cyclic wetting and drying on the collapse behaviour of residual soils has not been examined. This paper examines the influence of alternate wetting and drying on the collapse behaviour of compacted residual soil specimens from Bangalore District. Results of such a study are useful in anticipating changes in collapse behaviour of compacted residual soil fills. Experimental results indicated that the cyclic wetting and drying process increased the degree of expansiveness of the residual soils and reduced their collapse tendency. Changes in the swell/collapse behaviour of compacted residual soil specimens from wetting drying effects are attributed to reduction in water content, void ratio and possible growth of cementation bonds.  相似文献   

2.
Collapsing soils, which undergo a large decrease in bulk volume virtually instantaneously upon saturation and/or load application, are found in arid and semi-arid regions of the world. In the western and midwestern U.S., problems resulting from collapsing soils are being recognized due to rapid industrial and urban developments. A probabilistic analysis of the distribution of such soils would be a rational approach for quantifying risk involved for a project in an area where such soils are found. Indicator kriging was applied to seven sets of collapse and collapse-related soil parameters to obtain the probability that a certain parameter is more or less than a predefined critical value for low, medium, and high collapse susceptibility. Results are presented in the form of probability contour plots with known variance of estimation of the probability. The ability to predict the probability of occurrence of collapse and collapse-related soil parameters for different critical values with a known degree of certainty is invaluable to planners, developers, and geotechnical engineers.  相似文献   

3.
安哥拉罗安达广泛分布的湿陷性砂(Quelo砂),是一种对水十分敏感的特殊砂土,具有浸水后强度降低,并产生湿陷变形的特殊性质,由于缺乏相应的资料和工程经验,其湿陷程度和承载特性是评价的难点。本文通过天然和浸水饱和条件下的载荷试验,实测和研究了罗安达Quelo砂的湿陷变形特点和不同条件下的承载力特征。试验研究结果显示,罗安达Quelo砂是一种湿陷程度为轻微—中等的湿陷性土;Quelo砂的承载力对水分异常敏感,地基土含水率的微小变化即可导致承载力数倍的降低,且饱和后的承载力较小,试验场地浸水饱和后的地基承载力深度修正系数可取1.07。试验表明,在工程实践中考虑地基土含水率变化对地基承载力的影响,不采用消除地基全部湿陷量或部分湿陷量的方法,而将红砂地基当做一般地基进行设计是可行的。  相似文献   

4.
Collapsible soils are problematic by nature. They undergo collapse or sudden settlement or subsidence under a given stress when their water content is increased. Collapse is characterised by collapse potential expressed as ΔH/H x 100, where ΔH is collapse compression. The amount of stress applied and the water content at the time of collapse govern the amount of collapse. In other words, collapse potential depends upon the amount of stress and the water content. Loess and other wind-blown silts are examples of collapsible soils. This paper presents a parametric study on the collapse behaviour of a lateritic soil. Remoulded specimens of a lateritic soil passing through a 425 µm sieve were compacted in 1-D consolidometer or oedometer at a density of 13 kN/m3 for studying collapse under varied initial moisture contents and initial surcharge pressures. Collapse compression of the samples was induced by saturating the specimens with water contents corresponding to 100% degree of saturation. After collapse occurred, the 1-D consolidation tests were continued up to an applied stress of 160 kPa. Collapse behaviour was studied for the applied initial pressures (σi) of 10, 20 and 40 kPa and for the initial water contents (wi) of 5%, 10%, 15% and 20%. Collapse compression and collapse potential decreased with increasing wi for all σi.  相似文献   

5.
Arid regions worldwide are plagued by collapsible soils. Collapsible soil is characterised by the sudden decrease in volume that occurs when it is subjected to inundation under constant stress. This volume change manifest itself as drastic and unpredicted foundation settlement, which may lead to further catastrophic failure of the supported structures. Collapse settlement is the term applied to the additional settlement of a foundation due to wetting of the underlying soils. The results of an experimental investigation of the effects of the saturation of soil with water, kerosene, and crude oil, and of the effects of the fluid head on the magnitude, degree, and rate of collapse of the underlying soil are presented in this paper. Soil erodibility is presented in terms of the applied hydraulic shear stress and the rate of erosion. The relationship between soil erosion and the magnitude and rate of collapse is examined. Empirical methods for the prediction of the magnitude and rate of collapse of a soil saturated with the test fluids and subjected to a hydraulic constant head are proposed.  相似文献   

6.
Modeling soil collapse by artificial neural networks   总被引:1,自引:0,他引:1  
The feasibility of using neural networks to model the complex relationship between soil parameters, loading conditions, and the collapse potential is investigated in this paper. A back propagation neural network process was used in this study. The neural network was trained using experimental data. The experimental program involved the assessment of the collapse potential using the one-dimensional oedometer apparatus. To cover the broadest possible scope of data, a total of eight types of soils were selected covering a wide range of gradation. Various conditions of water content, unit weights and applied pressures were imposed on the soils. For each placement condition, three samples were prepared and tested with the measured collapse potential values averaged to obtain a representative data point. This resulted in 414 collapse tests with 138 average test values, which were divided into two groups. Group I, consisting of 82 data points, was used to train the neural networks for a specific paradigm. Training was carried out until the mean sum squared error (MSSE) was minimized. The model consisting of eight hidden nodes and six variables was the most successful. These variables were: soil coefficient of uniformity, initial water content, compaction unit weight, applied pressure at wetting, percent sand and percent clay. Once the neural networks have been deemed fully trained its accuracy in predicting collapse potential was tested using group II of the experimental data. The model was further validated using information available in the literature. The data used in both the testing and validation phases were not included in the training phase. The results proved that neural networks are very efficient in assessing the complex behavior of collapsible soils using minimal processing of data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
ABSTRACT

Backfills behind retaining walls are often made of collapsible soils, which are subjected to wetting by surface running water or by rising the groundwater table. Collapsible soil shows considerable strength when it is dry or at a relatively low degree of saturation and experiences excessive and sudden settlement when it is inundated. This paper presents an experimental investigation on walls retaining overconsolidated collapsible soil subjected to passive earth pressure. A prototype model of a vertical wall, retaining horizontal backfill was developed. Collapsible soil was prepared in the laboratory by mixing kaolin clay with fine sand. The model was instrumented to measure the total passive earth force on the wall, the passive earth pressure at strategic locations on the wall, and the overconsolidation ratio of the soil in the testing tank. The state of passive pressure was developed by pushing the wall horizontally toward the backfill without any rotation. Tests were conducted on walls retaining overconsolidated collapsible soil at the dry and at full saturation conditions. Results showed that for the dry state, the passive earth pressure increases with the increase of the collapse potential and overconsolidation ratio, and was significantly dropped at full saturation.  相似文献   

8.
Water content variations and respective ecosystems of sandy land in China   总被引:1,自引:0,他引:1  
Soil water conservation is essential to the sustainability of sandy farming. In this paper, long-term observation of soil water, dry soil thickness and soil chemical changes are evaluated at eight locations in sandy soil. This paper subdivides the sandy lands and deserts of China into three climate zones: arid (hyperarid and extremely arid), semiarid, and humid (subhumid and subtropical humid), with respect to the bioclimatic zone, aridity, soil water content, and soil chemical characteristics. The water movement conditions, and chemical variations in each zone are analyzed. The paper also estimates the spatial and temporal correlation function of arid soil thickness and soil moisture. Sandy soils organic matter content, CaCO3 content, soluble salts content are investigated. Afforestation and selection of tree species in different sandy areas are suggested to regulate sandy land soil moisture. Sandy land in China can be divided into the four sand stabilization regions according to the shifting sand conditions and the techniques advanced: regions I, II, III, and IV. These results have important implications for remote sensing of soil moisture and soil organic carbon, and soil moisture parameterization in climate models.  相似文献   

9.
Black cotton soil (BCS) deposits, stabilized with waste materials-wood-ash and organic matter (leaves, grass, etc.) exist in BCS areas of North Karnataka, India. These ash-modified soils (AMS) are apparently stabilized by hydrated lime produced by biochemical, dissolution, and hydration reactions. The influence of cyclic wetting and drying on the swelling behaviour of wood-ash-modified BCS and laboratory lime-treated BCS specimens are examined in this study. Such a study is required to assess the long-term behaviour of chemically stabilized soils in geotechnical applications. Cyclic wetting and drying caused the AMS specimens to become more porous and less saturated. Consequently, the cyclically wetted and dried (or desiccated) AMS specimens collapsed significantly at the experimental flooding pressures. The beneficial effects of lime-stabilization of the BCS specimens were also partially lost in cyclically wetting and drying them. The clay contents of the lime-treated BCS specimens increased on cyclic wetting and drying. The increased clay contents in turn, affected their Atterberg limits and swell–shrink potentials. Partial loss of inter-particle cementation, increased porosity, and reduced degree of saturation, also imparted small to moderate collapse potentials to the desiccated lime-treated BCS specimens.  相似文献   

10.
为了系统地了解温度对黏性土工程性质的影响,本文采用南京地区三种不同矿物成分的黏性土,制成不同含水量和干密度的试样,在5~45℃条件下,开展了抗剪强度试验,获得了三种土的非饱和重塑试样的抗剪强度与温度的关系.试验结果表明:黏性土的黏聚力随温度升高呈线性变化;亲水矿物含量较高的黏性土抗剪强度对温度变化较敏感,黏聚力随着温度...  相似文献   

11.
Shear induced collapse settlement of arid soils   总被引:1,自引:0,他引:1  
This paper presents the results of studies of deformation, strength and collapsibility of loess soils. Samples were taken from Al Dalam in central Saudi Arabia, which resembles an arid region. These samples were subjected to various laboratory tests to determine their physical and engineering properties. Sets of oedometer and direct shear tests were carried out in which the initial dry density and the normal pressure at wetting and shearing were each varied in turn. Oedometer results indicate that collapse potential decreases with density and increases logarithmically with normal pressure. Shear induces further collapse potential which increase with density due to further destruction of soil fabric. A unique shear stress–shear strain relationship was obtained for specimens prepared at different initial fabrics. Dry and soaked failure envelopes were both non-linear in the low-pressure range. Wetting induced a reduction in the shear strength parameters. The results of the tests are reported, and the significance of each variable is assessed.  相似文献   

12.
土体渗透性参数的测定是解决与水有关的岩土工程问题的关键所在。为使现场原状土体饱和渗透系数的测定更为准确,通过一种易于安装和固定的防蒸发型双环入渗仪,研究黄土的入渗规律与特点,试验结果表明:黄土的入渗分区可分为饱和区、湿润区与干土区,其中饱和区的入渗深度约占总入渗深度的1/2,而湿润区土体的饱和度在70%以上,这一特征与Green-Ampt入渗模型的假设较为接近,但在应用基于Green-Ampt模型的规范法(SL237-042-1999)求取黄土的饱和渗透系数时,发现该法会高估黄土的饱和渗透系数。因此,结合Green-Ampt入渗模型与土水特征曲线主要增湿路径的特点,提出了能合理测定现场黄土饱和渗透系数的双环入渗法,对Green-Ampt入渗模型参数加以修正,即直接采用干土区的初始基质吸力水头值,且该值由张力计实测或由主要增湿曲线求得;需采用入渗试验前期的平均入渗率;所对应的湿润锋发展深度需经由水分传感器实测而得。研究结果表明该法能合理估算现场黄土的饱和渗透系数。  相似文献   

13.
膨胀土的胀缩等级评判是进行膨胀土治理的首要任务,对膨胀土的判别与分类方法开展研究具有重要意义。本文在前人研究的基础上,选取膨胀土分类常用的4项指标(液限、塑限、自由膨胀率和标准吸湿含水率),利用粗糙集理论对各指标在分类时的重要性进行评价,进而建立一种简单的膨胀土多指标定量分类方法,易于工程实践操作。  相似文献   

14.
Bally, R.J., 1988. Some specific problems of wetted loessial soils in civil engineering. Eng. Geol., 25: 303–324.

Loessial soils, wetted above the limit of collapsibility, remain in the category of difficult foundation grounds. Some case histories are presented herein: surpassing soil bearing capacity and non-stabilized settlements of buildings after initially dry loess wetting; slow but nondamped settlements or damped but great and, eventually, non-uniform settlements of structures erected on wet loess; supplementary settlements by water level lowering in loessial ground; great settlements of deep foundations passing through the collapsible loess to the underlaying wet but noncollapsible loess. Research on wetted loess performed in the laboratory (oedometer, triaxial) or in situ (full-scale experiments or real constructions) have emphasized the dependence of the soil structural resistance, deformability (compressibility and deformation under constant volume) and final resistance on both the moisture content or stress-state and on their history; the depth propagation of the active zone of surface loadings on wetted loess is different from that of the linear elastic theory; some suggestions to estimate the depth of the active zone are presented. The usual foundation systems on wetted loessial grounds, or in their vicinity, adopted in Romania include: loessial or gravel cushions; surface compaction (very efficient results of intensive dynamic compaction); foundation “stamping” or loessial ground “reinforcing”. It is recommendable to take into consideration: surveyed wetting under construction until maximum moisture content of the loessial ground; in situ columns of stabilized loess; the efficiency of geotextiles for filter-drainage and antierosional functions in loessial soils.  相似文献   


15.
黄土的独立物性指标及其与湿陷性参数的相关性分析   总被引:1,自引:0,他引:1  
黄土的湿陷性是其重要的工程特性,常用一维压缩应力条件下的湿陷系数、自重湿陷系数和湿陷起始压力等指标定量评价。影响黄土湿陷性的因素较多,包括土的粒度、密度、湿度等基本物理性质指标,且各因素之间并非完全独立,存在一定相关性。采用因子分析法,通过对西安地铁4号线黄土高台地和宝鸡-兰州高速铁路隧道黄土塬湿陷性黄土场地地层物性质指标的统计分析和相关性分析,首先确定了相对独立的含水比(含水率与液限之比)和孔隙比3个物性指标反映的两个因子。然后,依据湿陷性黄土场地的试验资料,通过多元线性回归分析,分别得到了两个场地黄土的自重湿陷系数、湿陷起始压力以及压缩模量与含水比和孔隙比之间的相关关系。最后,比较分析了两个场地黄土自重湿陷系数、湿陷起始压力和压缩模量计算值与实测值,验证了利用因子分析法寻找影响黄土湿陷性的独立因子,建立黄土湿陷性参数与独立影响因子之间相关关系的合理性和准确性。针对两个地区两类地貌单元湿陷性黄土场地,建立的黄土湿陷性参数的相关关系具有快速、准确的评价黄土湿陷性和黄土地基湿陷变形的实际意义。  相似文献   

16.
为了研究靖远大厚度黄土在浸水条件下的水分入渗规律和自重湿陷变形特征,在中兰铁路沿线的靖远北站黄土自重湿陷场地进行了不打注水孔的现场浸水试验,监测并分析了地表及地下湿陷变形、试坑周围裂缝、含水率和土中竖向应力变化情况,对水分扩散规律、自重湿陷特性和土中竖向应力变化规律进行了研究,并对地区修正系数β0值和浸润角进行了探讨。结果表明:体积含水率变化分为浸水稳定(2个)、快速增加(1个)和缓慢增加(1个)共4个阶段;浸水过程中,水分在21m处竖向入渗加快、径向扩散减缓,湿润峰最终形态呈现为椭圆状。根据探井和钻孔含水率测试结果,推算出浸润角最大为41°。该场地黄土自重湿陷过程历经剧烈湿陷、缓慢湿陷和固结稳定3个阶段。试验结束时共计发展了13圈环状裂缝,裂缝最远处距试坑边缘26m。根据室内试验和现场测试结果,建议地区修正系数沿土层深度进行修正,0~10m内β0值取1.05,10~27 m内β0值取0.95。在地表至21 m深度范围内,地基土浸水饱和且湿陷充分,土中竖向应力沿深度呈线性增加,土中竖向应力接近饱和自重应力,21m以下的地基土未能充分湿陷,土中竖向应力逐渐减小。该研究成果可应用于中兰铁路...  相似文献   

17.
Expansive soils have received attentions of several investigators in the past half of century in the problematic soils context. Volume change behavior of unsaturated compacted soils in presence of water and change of degree of saturation was observed in two form of heave or collapse. Low water content and low density compacted soils in presence of enough surcharge pressure lose stability and collapse, because of their metastable and susceptible structure to change of degree of saturation. Free-swell and swelling pressure of five compacted clays, covering low to high plastic clays have been investigated in respect to compaction states and swelling pressure was compared with collapse pressure threshold. The results of experiments were utilized in two Artificial Neural Networks to predict free-swell percent and swelling pressure of a soil sample based on index properties and compaction state.  相似文献   

18.
Deformation and strength characteristics of the soil of Sana'a, the Yemen Arab Republic, were investigated. Undisturbed soil samples were collected fro used in consolidation, collapse and strength tests. The classical and critical state compressibility parameters were determined using a one-dimensional collapsing potential of the investigated soil was determined by using both qualitative and quantitative analysis. Consolidated undrained triaxial tests different types of samples: saturated samples and samples at natural moisture content. The stress history of the fine soils are in the range of normal except for the stiff fissured lean clay which exhibited a relatively high overconsolidated stress history. The loess formations exhibited a moderate to under wetting and loading. The investigated soils are characterized by having high shear strength when they have low moisture content and a drastic dec content increases.  相似文献   

19.
程钰  周正明 《岩土力学》2011,32(5):1399-1404
非饱和湿陷性土与湿胀性土分别具有亚稳态孔隙比结构和超稳态孔隙比结构,广义吸力是维持这种结构稳定的主要因素。随着广义吸力的丧失,两种结构均处于一个不稳定的孔隙状态,土体会向一个更加稳定的孔隙比结构发展。超孔隙比结构孔隙比增大,土体产生膨胀,亚稳孔隙比减小,土体产生收缩。基于这一稳态孔隙比理论,建立了广义吸力丧失引起的孔隙比的增量方程,来统一考虑非饱和土的湿陷性和湿胀性变形特性,并通过经典试验数据验证了增量方程的合理性  相似文献   

20.
膨胀土CBR强度特性机制分析   总被引:1,自引:0,他引:1  
余飞  陈善雄  许锡昌  余颂 《岩土力学》2007,28(6):1113-1117
以在建的周集-六安高速公路为依托工程,采集典型弱、中膨胀土开展系统的试验研究,探讨了膨胀土CBR强度随含水率、击实功和膨胀潜势的变化规律。试验研究表明:CBR峰值含水率要大于最优含水率,且膨胀潜势越高,击实功越大,CBR峰值含水率与最优含水率的差值越大。结合非饱和土气水状态理论,分析了膨胀土CBR强度特性的内在机制。研究发现,CBR强度特性的上述规律性,主要是由不同饱和度条件下膨胀土所处的气水状态所决定的。当饱和度小于界限饱和度时,土体处于非饱和状态,CBR强度随饱和度的增加呈指数增长,说明膨胀土的固有特性对CBR强度的影响很大;当饱和度大于等于界限饱和度时,膨胀土强度特性与饱和土类似,CBR强度主要受干密度控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号