首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Scattering of wavefields in a 3-D medium that includes passive and/or active structures, is numerically solved by using the boundary integral equation method (BIEM). The passive structures are velocity anomalies that generate scattered waves upon incidence, and the active structures contain endogenous fracture sources, which are dynamically triggered by the dynamic load due to the incident waves. Simple models are adopted to represent these structures: passive cracks act as scatterers and active cracks as fracture sources. We form cracks using circular boundaries, which consist of many boundary elements. Scattering of elastic waves by the boundaries of passive cracks is treated as an exterior problem in BIEM. In the case of active cracks, both the exterior and interior problems need to be solved, because elastic waves are generated by fracturing with stress drop, and the growing crack boundaries scatter the incident waves from the outside of the cracks. The passive cracks and/or active cracks are randomly distributed in an infinite homogeneous elastic medium. Calculations of the complete waveform considering a single scatter show that the active crack has weak influence on the attenuation of first arrivals but strong influence on the amplitudes of coda waves, as compared with those due to the passive crack. In the active structures, multiple scattering between cracks and the waves triggered by fracturing strongly affect the amplitudes of first arrivals and coda waves. Compared to the case of the passive structures, the attenuation of initial phase is weak and the coda amplitudes decrease slowly.  相似文献   

2.
Summary. The propagation of a pulsed elastic wave in the following geometry is considered. An elastic half-space has a surface layer of a different material and the layer furthermore contains a bounded 3-D inhomogeneity. The exciting source is an explosion, modelled as an isotropic pressure point source with Gaussian behaviour in time.
The time-harmonic problem is solved using the null field approach (the T matrix method), and a frequency integral then gives the time-domain response. The main tools of the null field approach are integral representations containing the free space Green's dyadic, expansions in plane and spherical vector wave functions, and transformations between plane and spherical vector wave functions. It should be noted that the null field approach gives the solution to the full elastodynamic equations with, in principle, an arbitrarily high accuracy. Thus no ray approximations or the like are used. The main numerical limitation is that only low and intermediate frequencies, in the sense that the diameter of the inhomogeneity can only be a few wavelengths, can be considered.
The numerical examples show synthetic seismograms consisting of data from 15 observation points at increasing distances from the source. The normal component of the velocity field is computed and the anomalous field due to the inhomogeneity is sometimes shown separately. The shape of the inhomogeneity, the location and depth of the source, and the material parameters are all varied to illustrate the relative importance of the various parameters. Several specific wave types can be identified in the seismograms: Rayleigh waves, direct and reflected P -waves, and head waves.  相似文献   

3.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   

4.
We design a numerical algorithm for wave simulation in a borehole due to multipole sources. The stress–strain relation of the formation is based on the Kelvin–Voigt mechanical model to describe the attenuation. The modelling, which requires two anelastic parameters and twice the spatial derivatives of the lossless case, simulates 3-D waves in an axisymmetric medium by using the Fourier and Chebyshev methods to compute the spatial derivatives along the vertical and horizontal directions, respectively. Instabilities of the Chebyshev differential operator due to the implementation of the fluid–solid boundary conditions are solved with a characteristic approach, where the characteristic variables are evaluated at the source central frequency. The algorithm uses two meshes to model the fluid and the solid. The presence of the logging tool is modelled by imposing rigid boundary conditions at the inner surface of the fluid mesh. Examples illustrating the propagation of waves are presented, namely, by using monopoles, dipoles and a quadrupoles as sources in hard and soft formations. Moreover, the presence of casing and layers is considered. The modelling correctly simulates the features—traveltime and attenuation—of the wave modes observed in sonic logs, namely, the P and S body waves, the Stoneley wave, and the dispersive S waves in the case of multipole sources.  相似文献   

5.
The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.  相似文献   

6.
Summary. An improved finite difference scheme has been used to simulate the propagation of a plane P -impulse in an elastic half space with a slot normal to its surface. Various angles of incidence and dimensions of slot are considered. The numerical results are presented in several visualizations; each emphasized a different type of wave and all representations help in understanding the scattered and diffracted wave pattern. Experiments were carried out using 0.5—6 MHz ultrasonic pulses on a duralumin semidisc with a surface-breaking slot and the results are compared with those given by the numerical models.
The scattered wavefield includes compressional and Rayleigh pulses whose amplitude increases at the front of the slot and decreases behind it, as the angle of incidence is reduced. A diffracted compressional pulse is generated with a semicircular wavefront centred at the mid-point of the bottom of the slot. Also, two elliptical eddies are excited at the lower corners. These ellipses propagate into the medium and eventually spread out to form arc-shaped shear pulses.
In the shadow zone, behind the slot, the two components of displacement show independent behaviour. The horizontal component decreases either with decreasing angle of incidence or as the slot is made deeper. For acute angles, a reduction of displacement amplitude of about 50 per cent is obtained when the depth of the slot is made a half pulse width. On the other hand there is no diminution of the vertical displacement behind the slot, and, near the upper right corner, it is even amplified.  相似文献   

7.
Summary. An improved finite difference scheme is applied to simulate wave propagation in the vicinity of a slot normal to the surface of an elastic half space. It provides visualization of the scattered wave pattern at a sequence of time steps, and also the components of displacement as functions of time at a series of observation points.
After being hit by a normally incident plane P pulse, the slot oscillates with two main cycles and two shear-compressional pairs of diffracted waves, and also Rayleigh pulses, are scattered from it. The resulting wavefronts are parallel to the vertical surfaces of the slot and curve in semicircular arcs around the bottom of the slot.
Experimental tests of the theory were performed, using 0.5–6 MHz ultrasonic pulses on duralumin cylinders with surface-breaking slots ranging from 0.5–2 mm in width and from 2–6 mm in depth. The numerical results were confirmed by these experiments.  相似文献   

8.
Scattering of surface waves modelled by the integral equation method   总被引:1,自引:0,他引:1  
The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at   R = 0  , based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.  相似文献   

9.
An effective and accurate technique for the numerical solution of 2-D electromagnetic scattering problems with 3-D sources is presented. This solution introduces a set of the usual boundary integral equations and uses a scalar Green's function. In this scalar version, the unknowns of the problem are the boundary values of the longitudinal fields and their normal derivatives in the Fourier domain. A generalization of the usual boundary integral formulation enables us to handle a large class of models composed of piecewise homogeneous domains, including contiguous domains, multiply-connected domains and unbounded domains. This formulation involves the solution of a system of linear equations, and results in a significant saving in computation time in comparison with other rigorous methods.
  The requirements for the numerical implementation of this solution are described in detail. Numerical tests were carried out using the important example of electromagnetic tomography. The specific symmetry properties of the response function in this case are illustrated. Numerical accuracy is verified over a large frequency range, up to 1  MHz.  相似文献   

10.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

11.
We present a new approach of the Indirect Boundary Element Method (IBEM) for 3-D topographic problems which can be used to deal with an infinitely spread free surface owing to the introduction of a reference solution, that is the analytical solution for the half-space with a flat free surface. This approach is an efficient countermeasure for the non-physical waves owing to the domain truncation which contaminates the computed results in the ordinary approach. Theoretical consideration shows that this newly proposed approach is a higher-grade approximation than some existing ones and achieves a higher efficacy and accuracy than those of existing ones. The discretization of the resulting boundary integral equation for this formulation is carried out with triangular elements. Their contributions to the solution are calculated by Gaussian numerical integration except in the case where the wavefield is evaluated on the source element itself. For this case, we present an analytical formula based on the reasonable assumption that the elements are much smaller than the wavelengths appearing in the calculation. Several numerical examples used for validation show acceptably precise results.  相似文献   

12.
i
Displacements of Love waves generated by a two-dimensional point source in a layered medium have been studied earlier by Sezawa & Sato by the method of successive reflections at the boundaries. In this paper the same problem has been worked out by using Green's function. The paper deals with the study of attenuation of Love waves of low periods in the coastal region. Experimental observations show that Love waves of smaller periods can be obtained only in the island observing stations. A slight intervention of the continental boundary is sufficient to attenuate lower period Love waves giving a hint thereby that attenuation of lower periods takes place perhaps at the continental margin. Taking a simplified configuration for the continental boundary and using Green's function technique, the displacement of Love waves due to a point source has been obtained and it has been shown that attenuation of Love waves of smaller periods takes place in the continental margin due to the slope of the boundary.  相似文献   

13.
Summary The displacement response of an elastic half space to a plane pressure wave is examined in order to establish the conditions under which sources of this type can contribute significantly to the long-period seismic noise field. The study is restricted to pressure waves which propagate at velocities well below the seismic wave velocities characteristic of the half space. The numerical studies indicate that pressure waves with amplitudes of 100 μbar or more can contribute significantly to the long-period vertical background noise observed at the surface, provided that the detectors are located on sections of alluvial fill or poorly to moderately indurated sandstones and shales whose thicknesses are greater than about a kilometre. These same waves can also create significant tilt noise on long-period horizontal seismographs located at or near the surface, regardless of the rock type. The seismic disturbances created by pressure waves decay rapidly away from the surface. Therefore, it appears that it may be possible to eliminate the effects of atmospherically generated noise by placing the detectors at moderate depths.  相似文献   

14.
We perform analytical and numerical studies of scaling relations of earthquakes and partition of elastic strain energy between seismic and aseismic components using a thermodynamically based continuum damage model. Brittle instabilities occur in the model at critical damage level associated with loss of convexity of the strain energy function. A new procedure is developed for calculating stress drop and plastic strain in regions sustaining brittle instabilities. The formulation connects the damage rheology parameters with dynamic friction of simpler frameworks, and the plastic strain accumulation is governed by a procedure that is equivalent to Drucker–Prager plasticity. The numerical simulations use variable boundary forces proportional to the slip-deficit between the assumed far field plate motion and displacement of the boundary nodes. These boundary conditions account for the evolution of elastic properties and plastic strain in the model region. 3-D simulations of earthquakes in a model with a large strike-slip fault produce scaling relations between the scalar seismic potency, rupture area, and stress drop values that are in good agreement with observations and other theoretical studies. The area and potency of the simulated earthquakes generally follow a linear log–log relation with a slope of 2/3, and are associated with stress drop values between 1 and 10 MPa. A parameter-space study shows that the area-potency scaling is shifted to higher stress drops in simulations with parameters corresponding to lower dynamic friction, more efficient healing, and higher degree of seismic coupling.  相似文献   

15.
This study describes an examination of surface gravity changes caused by dislocations within a 3-D heterogeneous earth. This new theory is described using six independent dislocations: a vertical strike-slip, two vertical dip-slips perpendicular to each other, and three tensile openings on three perpendicular planes. A combination of the six independent dislocations is useful to compute coseismic gravity changes resulting from an arbitrary seismic source at an arbitrary position. Based on the 3-D lateral inhomogeneous P -wave velocity model, we deduce the 3-D density and S -wave velocity models using the relation of Karato. Finally, numerical computations are performed for a location south of Japan (30°N, 135°E). We calculate the coseismic gravity changes resulting from the six independent dislocations for source depths of 100, 300 and 637 km, respectively. Numerical results show that the maximum 3-D effect varies concomitantly with the dislocation type and the source depth. For seismic problems, the effect of elastic parameter  μ  is dominant.  相似文献   

16.
In case of a complex overburden, the seismic data can be greatly improved by applying a full wavefield redatuming procedure. In practice, the application of the redatuming process to 3-D data acquired by conventional acquisition designs is non-trivial. Because of the large amount of data involved in the 3-D redatuming process and because of the sparseness of these data, it is impossible to apply conventional wave equation datuming directly.
We present a data mapping approach to redatuming (DMR), which follows the concept of Kirchhoff data mapping. A simplified background medium where no ray bending occurs is assumed for the medium below the datum in order to map an input data set referenced to the acquisition surface to an output data set referenced to the new datum level. The DMR method can be interpreted as a simplified version of the Kirchhoff summation redatuming (KSR) method, where one of the 2-D integrals over the acquisition coordinates can be solved analytically. Consequently, in this approach fewer traces are involved in the computation of one time sample (a 2-D integral is computed instead of a 4-D integral), which makes it particularly attractive for the application to 3-D data sets.
In this paper the theory underlying data mapping redatuming is discussed and the proposed approach is tested on fully sampled 2-D and 3-D synthetic data from models with both simple and complex velocity distributions in the subsurface.
The tests clearly show that the objective of producing results that are comparable to the conventional KSR has been achieved. The redatumed traces are dynamically and kinematically correct. Furthermore, these results confirm that the dependency of the new approach on the assumed medium below the datum level is, indeed, weak because the assumption of a velocity medium where no ray bending occurs is already sufficient to produce correct results.  相似文献   

17.
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a 'flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.  相似文献   

18.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

19.
The Born approximation is applied to the modelling of the propagation of deeply turning longperiod body waves through heterogeneities in the lowermost mantle. We use an exact Green's function for a spherically symmetric earth model that also satisfies the appropriate boundary conditions at internal boundaries and the surface of the earth. The scattered displacement field is obtained by a numerical quadrature of the product of the Green's function, the exciting wavefield and structural perturbations. We study three examples: scattering of longperiod P waves from a plume rising from the coremantle boundary (CMB), generation of longperiod precursors to PKIKP by strong, localized scatterers at the CMB, and propagation of corediffracted P waves through largescale heterogeneities in D". The main results are as follows: (1) the signals scattered from a realistic plume are small with relative amplitudes of less than 2 per cent at a period of 20 s, rendering plume detection a fairly difficult task; (2) strong heterogeneities at the CMB of appropriate size may produce observable longperiod precursors to PKIKP in spite of the presence of a diffraction from the PKP B caustic; (3) corediffracted P  waves ( P diff) are sensitive to structure in D" far off the geometrical ray path and also far beyond the entry and exit points of the ray into and out of D"; sensitivity kernels exhibit ringshaped patterns of alternating sign reminiscent of Fresnel zones; (4) P diff also shows a nonnegligible sensitivity to shear wave velocity in D"; (5) down to periods of 40 s, the Born approximation is sufficiently accurate to allow waveform modelling of P diff through largescale heterogeneities in D" of up to 5 per cent.  相似文献   

20.
This paper presents the development of a 2.5-D simulation technique for acoustic wave propagation in media with variable density and velocity. A comparative study of the 2-D and 2.5-D responses of a model reveals the spatially and temporally damped nature of the 2.5-D acoustic wave equations. The simulated results for constant and variable density models show that the density variation affects only the reflectivity of the layer. The computational cost for variable density models is 2.17 and 2.26 times that for constant density models for the 2.5-D and 2-D cases, respectively. Furthermore, the 2.5-D computational cost in the time domain is only about 10–15 per cent more than that for two dimensions, so this modest increase in computational cost can avoid the exorbitant 3-D computational cost.
Snapshots for a crosshole geometry were computed at various times in order to study the effect of heterogeneity on the amplitude and shape of the wave front. Extensive analysis of an oil-bearing reservoir with and without the inclusion of a gas zone was performed using a point source as well as multiple sources. In addition, the effects of the thickness of a low-velocity layer (oil-bearing) and of the location of the source have been studied. It is concluded from the numerical response that the waveguide action of the low-velocity layer depends on its thickness in terms of the dominant wavelength. Trapping of waves was not observed when the source was outside the low-velocity layer. Furthermore, the presence of heterogeneity in the low-velocity layer contributes considerably to the leakage of energy in the adjacent layers due to scattering/diffraction. It was found that, in the 2.5-D numerical simulation, the stability condition and the requirement of the number of grid points per wavelength to avoid grid dispersion are the same as for the 2-D case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号