首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We use electrical resistivity tomography to obtain a 6.8‐km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater‐ and freshwater‐saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole–dipole, Wenner, Wenner‐gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south.  相似文献   

2.
Marine intrusion is the most serious problem facing the coastal Jorf shallow aquifer, located in south‐eastern Tunisia on the Mediterranean Sea. Jorf Aquifer is intensively exploited to supply the growing needs of agriculture and domestic sectors. This work proposes a multidisciplinary investigation, involving hydro‐geochemical, geoelectrical survey and geostatistical techniques for modelling the saltwater intrusion. For this purpose, 36 water samples were conducted and analysed. Electric conductivity, pH, total dissolved solids and major ions were measured and analysed. Pie and Durov Diagrams, Q‐mode hierarchical cluster and geostatistical analysis were considered to identify the main groundwater mineralization processes. Results revealed that the Na‐Cl‐Ca‐SO4 is the dominant water type suggesting that dissolution of halite and gypsum was the main mineralization source of groundwater in the central and southern part of study area. However, saltwater intrusion was shown to control groundwater quality essentially in coastal areas. Variographic analyses were used to select the variographic model that best fits the spatial development of apparent resistivity. Kriged apparent resistivity profiles showed an abnormal decrease of resistivity values in the coastal zone, implying highly saline water because of seawater intrusion. Apparent resistivity values also decrease considerably in the faulted areas, suggesting a contribution of faults to seawater intrusion. Finally, saltwater mixing ratio was computed for each sample, and a refined seawater intrusion map was developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole–dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.  相似文献   

4.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The Kaluvelly watershed is a coastal area (Tamil Nadu, India) where water abstraction has resulted in a dramatic fall in the level of the water table and a piezometric depression in the most exploited aquifer, the Vanur aquifer. In addition, intensification/mechanization of agriculture may have affected the quality of recharge water. An initial hydrodynamic study showed that the Vanur aquifer is highly vulnerable to salinization due to potential seawater intrusion, and our aim was to determine the source of salinity recorded in the groundwater of this multilayered aquifer. Our approach involved the use of existing boreholes and of a moderate number of samples, with the aim of developing appropriate water resource management techniques. Major element, 18O/16O, 2H/1H and 87Sr/86Sr, ratios were measured in rainwater, surface water and groundwater collected during five sampling campaigns over a 2‐year period. Geochemical data indicate that the Vanur aquifer is recharged and that small mixings between aquifers fluctuate according to monsoon intensity. There was no evidence of seawater intrusion. The range of recorded salinity originated mainly from water–rock interaction but a disconnection of some deeper parts of the aquifer was apparent. Strontium isotopic ratios in the recharge area suggest an anthropogenic influence, possibly related to fertilizer use. A high SO4/Cl ratio was observed in the aquifer; in the deeper parts, the influence of a formation containing lignite is hypothesized, whereas near the surface, sulphate may partly originate from fertilizer use and fossil fuel combustion. Water isotopic data suggest that the origin of precipitation in this region has been unchanged for several hundreds or thousands of years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The coastal plain bordering the southern Venice Lagoon is a reclaimed lowland characterized by high subsidence rate, and ground level and water-table depth below sea level. In this agricultural region, where the surface hydrologic network is entirely artificially controlled by irrigation/drainage canals, salinization problems have long been encountered in soils and groundwaters. Here we use isotopic and geochemical tracers to improve our understanding of the origin of salinization and mineralization of the semi-confined aquifer (0–40 m), and the freshwater inputs to this hydrological system. Water samples have been collected at different seasons in the coastal Adriatic Sea, lagoon, rivers and irrigation canals, as well as in the semi-confined aquifer at depths between 12 and 35 m (14 boreholes), and in the first confined aquifer (three boreholes drilled between 40 and 80 m depth). Stable isotopes (δ18O and δD) and conductivity profiles show that direct saline intrusion from the sea or the lagoon is observed only in a restricted coastal strip, while brackish groundwaters are found over the entire topographic and piezometric depression in the centre of the study area. Fresh groundwaters are found only in the most western zone. The sharp isotopic contrast between the western and central regions suggests disconnected hydrological circulations between these two parts of the shallow aquifer. The border between these two regions also corresponds to the limits of the most strongly subsiding zone.Our results can be interpreted in terms of a four end-member mixing scheme, involving (1) marine water from the lagoon or the open sea, (2) alpine and pre-alpine regional recharge waters carried either by the main rivers Adige, Bacchiglione and Brenta (irrigation waters) or by the regional groundwater circulation, (3) local precipitation, and (4) evaporated waters infiltrated from the surface. Infiltration from the surface is also revealed by the stratification of the electrical conductivity profiles, showing that the brackish groundwaters are overlain by a shallow layer of less saline water all over the central depression. In the first confined aquifer, the groundwaters have isotopic compositions similar to the deep groundwaters of the Venetian confined aquifers (40–400 m depth). The isotopic data and the Br/Cl ratio show that the origin of the salinization of the phreatic aquifer can be ascribed to seawater intrusion alone, with no indication of the involvement of deep brines (identified at 450 m depth) in the process.The chemical composition of the saline and brackish groundwaters is characterized by an excess of sodium and a deficit of calcium compared to conservative mixing between fresh groundwaters and seawater. This suggests that the phreatic aquifer is progressively freshening, as a consequence of the beneficial influence of the extensive irrigation/drainage network, including raised canals acting as a hydraulic barrier along the coast. This freshening tendency may have been lasting since the reclamation in the mid-twentieth century, and has probably been accelerated by the ban on groundwater abstraction since the 1970s.  相似文献   

7.
Abstract

Abstract Geophysical results obtained in the Rharb basin, Morocco are reported. Correlations between hydrogeological well logs reveal several water-bearing Plio-Quaternary units resting on a substrate of blue marls. Geo-electrical borehole analyses were interpreted using bi-logarithmic diagrams which indicate the permeable layers of the aquifer and also its basement. Resistivity data from NE–SW and NW–SE electrical sections allow definition of the permeable/impermeable levels, and identification of ?ditches? that may be favourable sectors for hydrogeological exploitation. Resistivity anomalies were investigated by analysing maps of resistivity at 400 and 1000 m AB. Anomalies identified in the Rharb basin are related to the thickening of the permeable bodies (sand, limestone, sandstone deposits). In the coastal zone (AB = 1000 m), there is a strong decrease of the resistivity gradient (35–10 Ω m), which is probably linked to marine intrusion. Electrical anomalies allow detection of the water-bearing zones notably in the western and southwestern parts of the Rharb basin.  相似文献   

8.
Since the 1990s a large number of sinkholes have appeared in the Dead Sea (DS) coastal area. Sinkhole development was triggered by the lowering of the DS level. In the literature the relationship between the sinkholes and the DS level is explained by intrusion of relatively fresh water into the aquifer thereby dramatically accelerating the salt dissolution with creation of subsurface caverns, which in turn cause sinkholes. The main goal of our project was detection and localization of relatively fresh groundwater. During our study we used the transient electromagnetic method (TEM) to measure the electrical resistivity of the subsurface. As a test site we selected Nahal Hever South which is typical for the DS coast. Our results show that resistivity of the shallow subsurface reflects its vertical and lateral structure, e.g., its main hydrogeological elements explain the inter-relations between geology, hydrogeology, and sinkholes. The TEM method has allowed detailed differentiation of layers (clay, salt, etc.) in the subsurface based on their bulk resistivity. The 10 m-thick salt layer composed of idiomorphic crystals of halite deposited during the earlier Holocene period was extrapolated from borehole HS-2 through the study area. It was found that in Nahal Hever the typical value of the bulk resistivity of clay saturated with the DS brine varies between 0.2 and 0.3 Ωm, whereas saturated gravel and sandy sediments are characterized by resistivity between 0.4 and 0.6 Ωm. The high water salinity of the aquifer (enveloping the salt layer) expressed in terms of resistivity is also an important characterization of the sinkhole development mechanism. The electrical resistivity of the aquifer in the vicinity of the salt unit and its western border did not exceed 1 Ωm (in most cases aquifer resistivity was 0.2-0.6 Ωm) proving that, in accordance with existing criteria, the pores of the alluvial sediments are filled with highly mineralized DS brine. However, we suggest that the criterion of the aquifer resistivity responsible for the salt dissolution should be decreased from 1 Ωm to 0.6 Ωm corresponding to the chloride concentration of approximately 100 g/l (the chloride saturation condition reaches 224 g/l in the northern DS basin and 280 g/l in the southern one).Based on TEM results we can reliably conclude that in 2005, when most of sinkholes had appeared at the surface, salt was located within a very low resistivity environment inside sediments saturated with DS brine. Intrusion of relatively fresh groundwater into the aquifer through the 600 × 600 m2area affected by sinkholes has not been observed.  相似文献   

9.
Abstract

Vertical electrical resistivity soundings were measured near hydrological observation wells in order to ascertain whether geophysical means could be used to map saline water intrusion into a fresh water aquifer in Israel. The soundings showed that the low resistivity layers associated with the salt water are readily discernible. The technique was applied to the entire coastal belt and resulted in a detailed study of the saline water body and its extent. Measurements were repeated six years later and good agreement between the two sets of measurements was noted. This technique is therefore judged to be an accurate tool for the mapping of salt water intrusion in fresh-water aquifers.  相似文献   

10.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

11.
The proper management of coastal aquifers commonly requires an understanding of regional mass flow and complete seawater–freshwater circulation. In this study, time series observations of seawater intrusion and refreshing were conducted using a column experiment based on natural flow conditions in coastal groundwater and a sampled medium from a coastal sandy aquifer without chemical treatment. Ranges of hydrodynamic and hydrochemical variables were tested and analysed. The results showed that the zeta potential of suspended colloids in aqueous solution in an aquifer polluted with 0.5 g/kg of heavy metals exhibited an isoelectric point for pH values ranging from 5.70 to 6.07 when freshwater or seawater completely occupied the aquifer pores, which is representative of natural hydrochemical conditions. In this scenario, a high background concentration of heavy metals induced colloidal immobilization. Otherwise, seawater–freshwater circulation enabled colloid mobilization due to ionic strength and pH fluctuations. The migration of multiple heavy metals occurred at a characteristic time of approximately 1 pore volume after each intrusion stage began and when the peak rate of colloid release was reached. At these times, the colloid behaviour determined the quantity and pathway of heavy metal transport. On the basis of the influences of seawater and freshwater interactions, the quantity of mobilized particles generally decreased and was uniformly distributed in each fraction due to particle loss and decreased porous connectivity. We speculate that the decrease in the total surface area of the migratory colloids may cause colloid‐associated heavy metal transport to decrease. The experimental results provide a useful basis for testing coastal groundwater flow and mass transport models because these phenomena require full characterization to precisely evaluate the associated fluxes from the field scale to the microscopic dimension.  相似文献   

12.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

13.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

14.
15.
Seawater intrusion causes many problems for groundwater quality, whereas natural remediation is time consuming. However, in cases where groundwater replenishment is feasible, groundwater quality remediation is possible and rapid. The alluvial aquifer in the lowland of the Glafkos River basin, which extends south of Patras city, was for over 30 years the major water source supplying the broader area. Groundwater quality has been degraded due to seawater intrusion, caused by overpumping and generally by inappropriate groundwater management. During the last decade, groundwater quality has been remedied due to diminished groundwater abstractions. The remediation rate was further higher because of rapid discharge of the brackish groundwater, through wells with freely flowing water in the coastal area, where, however, groundwater quality remains low. This paper deals with the hydrogeochemical processes that take place in the area. It is ascertained that ion exchange and mineral dilution processes are dominant. The ion relations between chloride, bromide and iodide, as well as the distribution maps of their concentrations, were used to determine the spatial distribution of the seawater intrusion front. In the lower part of the area in a distance from 1000 and 1500 m from the coast, the rBr?/rCl? ratio showed low values (<2·5 × 10?3) similar to those of seawater. The rI?/rCl? ratio also presented low values (<7 × 10?5), with the lowest one (2·7 × 10?5) detected along the coastline. In the upper part of the area, a gradual change of those ratios was observed upstream, until they receive values similar to those of the surface waters of Glafkos River. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers   总被引:17,自引:0,他引:17  
Despite its purported importance, previous studies of the influence of sea-level rise on coastal aquifers have focused on specific sites, and a generalized systematic analysis of the general case of the sea water intrusion response to sea-level rise has not been reported. In this study, a simple conceptual framework is used to provide a first-order assessment of sea water intrusion changes in coastal unconfined aquifers in response to sea-level rise. Two conceptual models are tested: (1) flux-controlled systems, in which ground water discharge to the sea is persistent despite changes in sea level, and (2) head-controlled systems, whereby ground water abstractions or surface features maintain the head condition in the aquifer despite sea-level changes. The conceptualization assumes steady-state conditions, a sharp interface sea water-fresh water transition zone, homogeneous and isotropic aquifer properties, and constant recharge. In the case of constant flux conditions, the upper limit for sea water intrusion due to sea-level rise (up to 1.5 m is tested) is no greater than 50 m for typical values of recharge, hydraulic conductivity, and aquifer depth. This is in striking contrast to the constant head cases, in which the magnitude of salt water toe migration is on the order of hundreds of meters to several kilometers for the same sea-level rise. This study has highlighted the importance of inland boundary conditions on the sea-level rise impact. It identifies combinations of hydrogeologic parameters that control whether large or small salt water toe migration will occur for any given change in a hydrogeologic variable.  相似文献   

17.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Intensive pumping in urban coastal areas is a common threat to water resource quality due to seawater intrusion. In those areas where subsurface water resources are not usually used for human consumption or irrigation, intensive pumping is associated with other activities like the lowering of the water table necessary to support underground structures and building foundations. This activity also increases the likelihood of soil settlement that affects building stability and the corrosion of concrete structures due to groundwater salinity. Under these circumstances, the awareness of a certain municipality (Calonge, NE Spain) of the potential effects of groundwater withdrawal upon foundations has led to an integrated approach to anticipate seawater intrusion related to urban development. Geological mapping and correlation of borehole logs, electrical resistivity tomography, and hydrochemical data provide comprehensive knowledge of the geology and hydrogeology of the area and act as screening tools necessary to discern the influence of hydrological processes in coastal areas. Developing Strack's analytical solution, new comprehensive, dimensionless expressions are herein derived to determine the critical pumping rate necessary to prevent seawater intrusion, as well as to reproduce the evolution of the wedge toe and the water table stagnation point under different withdrawal rates. Furthermore, the Dupuit–Forchheimer well discharge formula allows the estimation of the effects of the water table lowering due to such critical pumping in the surrounding building foundations. Field data from the Calonge coastal plain illustrate this approach and provide assessment criteria for future urban development and planning. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater management needs detailed aquifer characterization, especially in semiarid costal aquifer systems that are under hydrological pressure. Our study area is in the Tordera delta, northeastern coast of Spain, where a detrital fluvio-deltaic aquifer system has been developed above granitic basement. The main purpose of this study is to characterize the complex lithological structure and the seawater intrusion state by combining hydrological information, audiomagnetotelluric (AMT) and seismic reflection and refraction models. This allowed us to provide spatially continuous information about aquifer properties and processes. Thus, we have determined the thickness and continuity of the aquifer units, as well as the morphology and depth to the basement. The models revealed that the main seawater intrusion main path is found in the western deltaic area that coincides with an existing buried paleochannel. This new result explains the anomalously high chlorine concentrations observed in the deep semiconfined aquifer more than 1,500 m inland.  相似文献   

20.
A variety of multivariate statistical procedures were applied to three separate sets of quantitative analytical data from a coastal aquifer located in Malia, Crete (Greece), in order to identify the major hydrochemical processes affecting the groundwater quality and to investigate the evolution of groundwater composition in three different sampling periods. Two of them were carried out on October 2001 and September 2002 at the end of the dry season and the third on April 2002 at the end of the wet period. Two factors were found that explained major hydrochemical processes in the aquifer. These factors reveal the existence of an intensive intrusion of seawater and mechanisms of nitrate contamination of groundwater. Bivariate plots of the scores of the two main factors showed that the seawater intrusion and nitrate pollution processes are maintained through three surveys and that the process of nitrate pollution increases from the first to the second dry survey. Q‐mode factor analysis and discriminant analysis of the three sampling periods clearly showed a seasonal variation of the whole chemistry of groundwater samples. This seasonal variation can be attributed to the freshwater recharge and seawater intrusion that affect the groundwater quality of the Malia aquifer. The results of trend surface analysis are in agreement with those of factor analysis. Moreover, the fourth‐order trend surfaces of EC, Cl? and NO3? showed that the salinization process is more intensive during the first dry period and the spatial variation of NO3? maxima plumes are strongly affected by the flow regime of the Malia aquifer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号