首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   

2.
The Late Glacial and Holocene geomorphology of the Manx uplands has received scant attention in previous researches. Solifluction deposits and terraces provide the earliest evidence for geomorphic activity after deglaciation. Fluvial incision into drift-choked valleys is correlated with the formation of the large mountain front alluvial fans that flank the Manx uplands. Formation of these alluvial fans is constrained to 15,000–10,500 cal. years BP by 14C dates on organic deposits beneath and above the alluvial fan gravels. Alluvial fan and river terraces along four valleys postdate this incision. Optically Stimulated Luminescence (OSL) and 14C dating provide a tentative chronology for these landforms. The higher terraces are Late Glacial fluvial surfaces that were probably occupied by rivers into the Holocene. Incision during the Late Holocene led to the abandonment of the higher surfaces, producing a suite of younger river terraces and alluvial fan surfaces. Independent dating constrains this fluvial activity to post-Bronze Age (3500–2800 cal. years BP). Increased human activity and climatic change during the Late Holocene are possible causes for this increased geomorphic activity.  相似文献   

3.
《Geomorphology》2002,42(3-4):255-278
The Hunter Mountain fault zone strikes northwesterly, is right-lateral strike-slip, and kinematically links the northern Panamint Valley fault zone to the southern Saline Valley fault zone. The most recent displacement of the fault is recorded in the offset of Holocene deposits along the entire length of the fault zone. Right-lateral offsets of drainage channels within Grapevine Canyon reach up to 50 to 60 m. Initial incision of the offset channels is interpreted on the basis of geomorphic and climatic considerations to have occurred approximately 15 ka. The 50 to 60 m of offset during 15 ka corresponds to a right-lateral fault slip rate of 3.3–4.0 mm/year within Grapevine Canyon. Further to the north along the Nelson Range front, the fault is composed of two sub-parallel fault strands and the fault begins to show an increased normal component of motion. A channel margin that is incised into a Holocene surface that is between 10 and 128 ka in age is offset 16–20 m, which yields a broad minimum bound on the lateral slip rate of 0.125–2.0 mm/year. The best preserved single-event displacements recorded in Holocene deposits range from 1.5 to 2.5 m. In addition to faulting within Grapevine Canyon and the main rangefront fault along the southwest edge of Saline Valley, there also exist normal fault strands within the Valley that strike northeasterly and towards Eureka Valley. The northeasterly striking normal faults in the Valley appear to be actively transferring dextral slip from the Hunter Mountain fault zone north and east onto the Furnace Creek fault zone. Separations on northerly trending, normal faults within Saline Valley yield estimates of slip rates in the hundredths of millimeters per year.  相似文献   

4.
Major climatic changes and rapid local and regional tectonic movements were common in New Zealand during the late Quaternary and caused a diversity of adjustments in the drainage-basin and piedmont reaches of the Charwell River, which are separated by the Hope Fault. The onset of semi-arid, frigid climates during the latest Pleistocene probably greatly increased hillslope sediment yields in a periglacial environment, and the piedmont reach aggraded as much as 42 m on top of a broad strath. With the return of humid, mesic climates in the Holocene sediment yields decreased as dense forests again mantled the slopes, and the piedmont reach degraded as mush as 81 m. Dating of eleven cut-and-strath terraces by radiocarbon-calibrated weathering rind measurements on greyawake cobbles shows the degradation rates varied greatly during the last 14 ka (1 ka = 1000 yr). Initial degradation rates of < 4 m ka−1 increased to 30 m ka −1 by 6 ka ago during a mid-Holocene climatic optimum. Since 4 ka ago degradation rates have been only 1.2 m ka−1, comparable to uplift rates in the piedmont reach inferred from marine-terrace studies, and the river is again cutting a broad strath. Each broad strath represents equilibrium conditions attained by this powerful stream during interglacial times despite episodes of being overwhelmed by climatically induced sediment-yield increases during full-glacial climates and having to maintain a long-term degradation rate equal to the uplift rate.The 75–81 m of degradation since formation of the latest Pleistocene fill-terrace tread is the sum of the amount of late Pleistocene valley-floor aggradation and the amount of regional uplift that occurred between the estimated times of major strath formation at about 30 and 0 ka. The 39 m of tectonically induced degradation below the pre-aggradation strath is sufficiently large that post-30 ka uplift may have doubled Holocene degradation rates.Each of the eleven degradation terraces represents pauses of a few centuries in Holocene downcutting. Brief equilibrium conditions were attained by streambed armoring and concurrent growth of riparian plants; both processes progressively increased hydraulic roughness and the shear stresses needed to entrain streambed materials. Occasional floods, possibly from rare cyclones derived from tropical moisture sources, destroyed streambed armor and channel downcutting was renewed. Thus the formation of eleven equilibrium terraces can be accounted for without postulating additional tectonic perturbations or secular climatic changes.  相似文献   

5.
The Kunlun fault is one of the largest strike-slip faults in northern Tibet, China. In this paper, we focus upon the Kusai Lake–Kunlun Pass segment of the fault to understand the geomorphic development of offset streams caused by repeated large seismic events, based on tectono-geomorphic analysis of high-resolution satellite remote sensing images combined with field studies. The results indicate that systematic left-lateral stream offsets appear at various scales across the fault zone: Lateral offsets of small gullies caused by the 2001 Mw 7.8 Kunlun earthquake vary typically from 3 m to 6 m, meanwhile streams with cumulative offsets of 10 m, 25–30 m, 50–70 m, 250–300 m and 750–1400 m have resulted from repeated large seismic events during the late Quaternary. An average slip rate of 10 ± 1 mm/year has been estimated from the lateral stream offsets and 14C ages of alluvial fan surfaces incised by the streams. A three-dimensional model showing tectono-geomorphic features along a left-lateral strike-slip fault is also presented. The Kusai Lake–Kunlun Pass segment provides an opportunity to understand the relationship between geomorphic features produced by individual large seismic events and long-term geomorphic development caused by repeated large seismic events along a major strike-slip fault.  相似文献   

6.
Staircases of strath terraces and strongly incised valleys are the most typical landscape features of Portuguese rivers. This paper examines the incision achieved during the late Cenozoic in an area crossed by the Tejo river between the border with Spain and the small town of Gavião. In the more upstream reach of this area, the Tejo crosses the Ródão tectonic depression, where four levels of terraces are distinguished. During the late Cenozoic fluvial incision stage, the Ródão depression underwent less uplift than the adjacent areas along the river. This is reflected by the greater thicknesses and spatial extent of the terraces; terrace genesis was promoted by impoundment of alluvium behind a quartzitic ridge and the local presence of a soft substratum. Outside this tectonic depression, the Tejo has a narrow valley incised in the Hercynian basement, with some straight reaches that probably correspond to NE–SW and NNW–SSE faults, the terraces being nearly absent. Geomorphological evidence of tectonic displacements affecting the Ródão dissected terrace remnants is described. Geochronological dating of the two younger and lower terrace levels of this depression suggests a time-averaged incision rate for the Tejo in the Ródão area, of ca. 1.0 m/ka over the last 60 thousand years. A clear discrepancy exists between this rate and the 0.1 m/ka estimated for the longer period since the end of the Pliocene. Although episodes of valley incision may be conditioned by climate and base-level changes, they may also have been controlled by local factors such as movement of small fault-bounded blocks, lithology and structure. Regional crustal uplift is considered to be the main control of the episodes of valley incision identified for this large, long-lived river. A model is proposed in which successive regional uplift events—tectonic phases—essentially determined the long periods of rapid river downcutting that were punctuated by short periods of lateral erosion and later by some aggradation, producing strath terraces.  相似文献   

7.
Lake Lisan, the lake that filled the Jordan graben during the Last Glacial, left behind a well developed sequence of erosional and depositional shore terraces in the south east of the current Dead Sea. These terraces record a series of stillstands that were caused by small transgressions within an overall trend of falling lake levels. The terraces were observed in places where they had not been identified previously. The morphology of the terraces was investigated in six cross-sections using differential GPS altimetry. The levels of the terraces range between − 370 and − 148 m a.s.l. The high stand of Lake Lisan at − 148 m correlates well with the high level of − 150 m reported by Bowman and Gross [Bowman, D., Gross, T., 1992. The highest stand of Lake Lisan: ~ 150 meters below MSL. Israel Journal of Earth-Science 41, 233–237.] along the western coast of Lake Lisan. The lake terraces are horizontal, elongated and tectonically undisturbed, and have a sub-horizontal foreshore (tread) with an average slope of 8.2° and steep backshore cliff (riser) with an average slope of 17.7°. The six cross-sections show a good altitudinal correlation between their terraces. Moreover, the terraces appear in undisturbed continuity on the aerial photos. These morphological characteristics demonstrate that the retreat of the lake was a result of substantial climatic changes, not of tectonic subsidence.In-situ stromatolites were found on most of the terraces, reflecting a shallow water environment and emphasizing that these terraces are recessional. Well-developed desert varnish and Tafoni observed on blocks sitting on the terrace surfaces imply a long period of exposure and a low rate of post lacustrine erosion. The formation of Lisan terraces is constrained mainly by coastal slope, water depth and underlying lithology. The morphological analysis of these terraces allows identification of two kinds of pseudo-terraces, which were formed as a result of tread or riser destruction.U/Th and OSL dating allowed the dating of three events within the lake level curve more precisely. The high level of − 148 m occurred at 30.5 ± 0.22 ka BP, consistent with the Heinrich Event 3 and Dansgaard–Oeschger stadial 5, the coldest period in the NGRIP Greenland Ice Core record. The next lower terrace at − 154 m was formed at 22.9 ka BP ± 0.29 and corresponds to the stadial 2C, the final phase of the Last High Glacial. The correlation between the Lisan high stands and climatic stadials suggests that Northern-Hemispheric cold periods led to periods with a more positive water balance in the Near East. At ~ 10 ± 0.8 ka BP Lake Lisan experienced a sharp drop to − 200 m followed by a transgression between 9.5 to 7 ka BP.  相似文献   

8.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces.  相似文献   

9.
The Taranto Gulf of southern Italy provides an excellent case where it is possible to document the importance of normal faults in displacing terraced deposits. The study area is located at the front of the southern Apennines, that is a fold-and-thrust belt developed following the closure of the Mesozoic Tethys Ocean, and the deformation of the Adriatic passive margin during Tertiary and Quaternary times. The outer, eastern parts of the belt were structured in Quaternary, i.e. up to Middle Pleistocene times.The front of the chain is partially sealed by Pliocene–Pleistocene foredeep deposits, which represent the infill of the Bradanic Trough. The upper portion of the middle Pleistocene succession consists of marine sands and conglomerates that in the previous literature have been arranged in several orders of terraces. Analysis of aerial photographs and geomorphological mapping has shown the occurrence of prominent geomorphic lineaments, which appear to control the local drainage pattern. Some of these structures coincide with the map trace of normal faults that produce vertical offsets of the marine terrace surfaces in the order of ca. 10 m each. Many of the fault escarpments reduce their elevation and terminate laterally. In other cases fault escarpments are laterally continuous and can be traced for up to 3–4 km. Scarp height is between 2 and 10 m. Their mean trend ranges from NNE–SSW to ENE–WSW and defines an arcuate pattern that mimics the present coastline.An accurate geomorphological, sedimentological and stratigraphic analysis has been carried out in a selected area of the Bradanic Trough (Pisticci transect) to investigate in detail the relationships between normal faults and the development of the terraces. This analysis allowed us to recognise five facies associations related to the upper and lower beachface and to the neritic clays which represent the substratum of the terraces. More importantly, we observed that all the terraced deposits in the Pisticci transect could be referred to a single sedimentary body displaced by faults. The terraced deposits are related to an event of beach progradation, of Middle Pleistocene age, which has been documented in other areas of the Italian peninsula. These results outline an intimate relationship between the arcuate trend of the recognised fault set and the present coastline pattern. The development of the normal faults can be related to large-scale gravitational processes developed after the general tilting towards the SE of the Bradanic Trough.  相似文献   

10.
Holocene coastal evolution in New South Wales has been interpreted essentially as the unfolding of the impact of marine transgression. Sea level on this coast supposedly reached its present height at 6–6.5 ka, and varied < 1 m since then. The early Holocene rise of the sea has been considered the key factor (“forcing function”) in dune migration, coastal sand barrier development, and the evolution of estuaries. Episodic storminess during the late Holocene has been seen as an important, though secondary, factor in beach erosion and dune mobilisation. An alternate interpretation presented here challenges the concept of the marine transgression as the primary “forcing function”. It (a) attributes early Holocene dune mobilisation to climate rather than the rising sea; (b) shows that the sea reached its present level by 7 ka and rose to at least + 2 m until 1.5 ka; (c) links late Holocene dune activity to local disruption of vegetation rather than to regional episodic storminess; (d) demonstrates a fall of 2°C in sea surface temperature after 3 ka that coincides with the onset of barrier erosion; (e) recognises the imprint of at least three tsunamis in the coastal sedimentary record.  相似文献   

11.
Jean-Pierre Larue   《Geomorphology》2008,93(3-4):398-420
This work examines the links between tectonics and fluvial dynamics on the north-western margin of the French Central Massif. Geomorphological and sedimentological analyses of detrital deposits were carried out as the basis for correlating the different formations, and for reconstructing the palaeodrainage in the Creuse basin. Cross-sections of the valleys, longitudinal profiles of terraces and glacis indicate post-depositional deformation of about 50 m amplitude: uplift north and south of Guéret and in the Éguzon district. These deformations are related to the Central Massif uplift of 50 m above the Paris Basin since 1.1 Ma (OIS 32). The Creuse incision varies from 140 m in the Crozant anticline to 60 m in the Paris Basin. An Upper Pliocene palaeochannel located on the Sédelle–Ardentes–Issoudun lineament is evidenced by andalusite coming from the Fougères unit. The reactivation of the transverse faults between Le Pin and Le Menoux has distorted the middle terraces. The main knick points are mainly due to tectonics and have been persistent in the landscape since the Upper Pliocene. Their recession rate is controlled both by discharge and lithology. Tributary streams exhibit strong convexities, indicating that the erosional response to Pliocene uplift has not yet propagated into upland surfaces.  相似文献   

12.
Nicola J. Litchfield   《Geomorphology》2008,99(1-4):369-386
In order to make robust predictions of future coastal processes and hazards, historical rates of coastal processes such as coastal erosion need to be put into a long-term (Holocene) context. In this study a methodology is proposed that uses fluvial terraces to construct longitudinal profiles which can be projected offshore to infer paleo-coastline positions. From these positions, an average Holocene coastal erosion rate can be calculated. This study also shows how constraints can be placed on sea level changes and Late Pleistocene uplift rates using fluvial terraces, and by assuming the latter has been constant since  55–37 ka, these constraints feedback into the coastal erosion rate calculations. For the northwestern Hawke Bay (North Island, New Zealand) coastline, Late Pleistocene uplift rates of 0.6 ± 0.2, 0.6 ± 0.2, and − 0.1 ± 0.1 (i.e., stable or subsiding) mm/yr have been determined for the Waikari, Mohaka, and Waihua River mouths, respectively. These rates are consistent with previous interpretations of subsidence to the northeast and uplift being the result of regional, subduction-related processes. A Holocene coastal erosion rate of 0.5 ± 0.1 m/yr was determined for the Waikari River mouth, which is at the higher end of the calculated historical ( 1880–1980) rates (0.02–0.5 m/yr). If this difference is significant, then two possible reasons for this difference are: (i) the historical rate is affected by events such as the 1931 Napier earthquake, and (ii) the Holocene rate is the average of a steadily declining rate over the last 7.3 ka.  相似文献   

13.
This paper examines the millennial-scale evolution of the longitude profile of Nahal (Wadi) Zin in the Dead Sea basin in the northern Arava valley, Israel. Nahal Zin has incised ~ 50 m into relatively soft late Pleistocene Lake Lisan sediments. Incision was forced by the regressive (> 10 km) lake level fall of a total of > 200 m of Lake Lisan from its highest stand at ~ 25 ka and exposure of the lake-floor sediments to fluvial and coastal processes. Alluvial cut terraces of the incising channel are well preserved along the 17.5 km of the lowermost reach of Nahal Zin. At its outlet into the Dead Sea basin, Nahal Zin deposited a Holocene alluvial fan at the base of a 10–80 m high escarpment in unconsolidated sediments. The escarpment is associated with the Amazyahu fault, which forms the southern structural boundary of the present Dead Sea basin. Geomorphic mapping, optically stimulated luminescence (OSL) ages, and soil stratigraphy allowed correlation of terrace remnants and reconstruction of several past longitudinal profiles of Nahal Zin and its incision history. Together with the published lake level chronology, these data provide an opportunity to examine stream incision related to base level lowering at a millennial scale. OSL ages of the terraces fit relatively well with the established lake level chronology and follow its regression and fall. For a few thousands of years the longitudinal profile response to the lake level fall was downstream lengthening onto the exposed former lake bed. Most of the incision (~ 40 m) occurred later, when the lake level reached the top of the Amazyahu fault escarpment and continued to drop. The incision was a relatively short episode at about 17 ka and cut through this escarpment almost to its base. The fast incision, its timing, and the profiles of the incising channels indicate that the escarpment was an underwater feature and was not formed after the lake retreated.This fairly simple scenario of regressive lake level fall and knickpoint exposure and incision is modeled here using a one-dimensional numerical incision model based on a linear diffusion equation. The calculated diffusion coefficient fits earlier results and data obtained from other streams in the area and confirms the upscaling of this simple model to the millennial scale.  相似文献   

14.
The Parque Nacional Torres Del Paine and surrounding area in the Magallanes foreland basin in Chilean Patagonia is the site for numerous lakes fed by glaciers and rivers in the Andean highlands to the west. The lakes are elongate and have conspicuously systematic orientations. We hypothesize that the origin of the oriented lakes lies in the fault system, composed of a right-lateral strike-slip fault set oriented 58° from north, a left-lateral strike-slip set oriented 87°, and a thrust fault set oriented 167°, that exists within the underlying rocks. To test this hypothesis quantitatively, we determined the shape and orientation of the lakes by fitting each lake with an ellipse of appropriate aspect ratio, and later with multiple ellipses consistent with the composite geometry of some lakes. We then examined the faults in the area in terms of their kinematics, orientation and distribution. The distribution of lake orientations showed three distinct groups which appear to correspond to the three main fault groups. For lakes fitted with multiple ellipses, the difference in means between the right-lateral, left-lateral, and thrust faults and their corresponding groups of lakes are 3.05°, 1.57°, and 5.17°. Using a Kolmogorov–Smirnov (K–S) statistical test to compare the orientations of faults with respect to the lakes suggests that there is not a strongly significant difference between the fault orientations and the corresponding lake groups. These results indicate that the faults have a profound control on the orientation, shape, and distribution of the lakes. We attribute this to faults and their damage zones being weaker and therefore prone to a faster rate of erosion, and to stress perturbations associated with discontinuous faults resulting in localized high density fracturing and surface subsidence. These results have implications for lake and drainage system morphologies in other foreland basins along the Andes and other similar settings.  相似文献   

15.
海岸阶地的形成通常是海平面变动、地壳变动或两者共同作用之结果.对于海阶的研究除了可印证推论古气候、往昔海平面变化及地壳变动状况,还可藉以了解各区域间变动的差异,全盘了解大地构造的意义;小规模的海阶变动,时常与地震活动伴生,因此,研究海阶更可作为判读地震周期的依据之一.世界各地位于地壳活动带的国家对海阶的形态与演育过程均作详细的调查及研究.距今2亿年前的三叠纪晚期的一系列构造运动,形成福建沿海地区的区域变质带和长乐一南澳断裂带,由于构造运动的影响,于断裂带东缘形成了一系列岛屿,金门列岛的形成,与中国东南沿海的造山运动有着密切关系,皆受到影响而产生变动.金门地区的海阶,共有11段阶地,海拔依序为0~10m、15~25m、30~45m、50—65m、70—80ITI、90~120in、130—154m、160~165m、190~208m、215~225m、230~250m,依据晚更新世海阶序列与隆升率关系对比基图迭合法的推估,各段阶地的年代分别为6kaBP、46kaBP、57kaBP、64kaBP、80kaBP、100kaBP、103kaBP、120kaBP、176kaBP、190kaBP、202kaBP,除了第一阶为全新世时期所形成,其余皆为更新世时期的产物,针对金门列岛海阶的高度与间距做对比,得知该区的平均隆升速率为1.3mm/a.  相似文献   

16.
Ostracodes document a series of late Quaternary climatic and limnologic changes within the Lake Winnebago basin of east-central Wisconsin. Using a 14 C, 137Cs, and 210Pb-based geochronology, Lake Winnebago ostracode abundances were compared to regional patterns of ostracode biogeography and the paleontological, sedimentological, and geochemical records of Elk Lake (Clearwater County), Minnesota, in order to interpret past temperature and hydrochemical changes in Lake Winnebago. Lake Winnebago sediments contain five major ostracode species, Candona ohioensis, Candona rawsoni, Cytherissa lacustris, Limnocythere verrucosa, and Physocypria pustulosa. In combination with sedimentology and geochronology, variations in the abundances of these species allow the late Quaternary record of the Lake Winnebago basin to be subdivided into five major climatic intervals: (1) glacial to post-glacial (15.5–11.0 ka), (2) cold and variable immediate post-glacial (11.0–10.4 ka), (3) warmer and wet early Holocene (10.4–7.8 ka), (4) warm but not particularly dry middle Holocene (7.8–4.2 ka), and (5) warm and moist late Holocene (4.2 ka-present).  相似文献   

17.
距今二亿年前的三迭纪晚期一系列之大地构造运动,形成福建沿海的平潭-东山褶皱带,以及长樂-诏安断裂带,又因为构造运动以及岩浆活动的影响,在褶皱带与断裂带的东缘形成一系列的岛屿,马祖列岛的形成,与中国东南沿海的造山运动有密切关系,皆受到影响而产生变动。马祖地区的海阶,共有9 段阶地,各段阶地的海拔高度依序为0~10 m、20~38 m、40~56 m、58~78 m、80~97 m、100~128 m、142~160 m、172~182 m、238~248 m。依据晚更新世海阶序列与隆升率关系对比基图迭合法的推估,各段阶地生成年代分别为6 ka BP、46 ka BP、55 ka BP、76 kaBP、79 ka BP、94 ka BP、105 ka BP、119 ka BP、175 ka BP,除了第一级阶地为全新世时期所形成,其余皆为更新世时期的产物,比对马祖列岛海阶的高度与间距,测得整个地区的基盘平均隆升速率为1.6 mm/a。  相似文献   

18.
The northeast-trending Pallatanga right-lateral strike-slip fault runs across the Western Cordillera connecting N50E-N70E trending normal faults in the Gulf of Guayaquil with N-S reverse faults in the Interandean Depression. Over most of its length, the fault trace has been partly obscured by erosional processes and can be inferred in the topography only at the large scale. Only the northern fault segment, which follows the upper Rio Pangor valley at elevations above 3600 m, is prominent in the morphology. Valleys and ridges cut and offset by the fault provide an outstanding record of right-lateral cumulative fault displacement. The fault geometry and kinematics of this particular fault segment can be determined from detailed topographic levellings. The fault strikes N30E and dips 75 to the NW. Depending on their size and nature, transverse morphological features such as tributaries of the Rio Pangor and intervening ridges, reveal right-lateral offsets which cluster around 27 ± 11m, 41.5 ± 4 m, 590 ± 65 m and 960 ± 70 m. The slip vector deduced from the short-term offsets shows a slight reverse component with a pitch of about 11.5 SW. The 41.5 ± 4 m displacements are assumed to be coeval with the last glacial termination, yielding a mean Holocene slip-rate of 2.9- 4.6 mm yr−1. Assuming a uniform slip rate on the fault in the long term, the 27 m offset appears to correlate with an identified middle Holocene morphoclimatic event, and the long term offsets of 590 m and 960 m coincide with the glacial terminations at the beginning of the last two interglacial periods.  相似文献   

19.
河西走廊平原区全新世河流阶地对气候变化的响应   总被引:21,自引:4,他引:21  
李有利  杨景春 《地理科学》1997,17(3):248-252
河西走廓的古洋河,黑河,北大河和疏勒不可在平原发育了两级阶地,根据^14C测年数据,低阶地形成于5.57-3.15kaB.P.,高阶地形成于11-8kgB.P.,在8-6kaB.P.之间为河流下切期。  相似文献   

20.
In this paper, we apply current geological knowledge on faulting processes to digital processing of Digital Elevation Models (DEM) in order to pinpoint locations of active faults. The analysis is based on semiautomatic interpretation of 20- and 60-m DEM and their products (slope, shaded relief). In Northern–Eastern Attica, five normal fault segments were recognized on the 20-m DEM. All faults strike WNW–ESE. The faults are from west to east: Thriassion (THFS), Fili (FIFS), Afidnai (AFFS), Avlon (AVFS), and Pendeli (PEFS) and range in length from 10 to 20 km. All of them show geomorphic evidence for recent activity such as prominent range-front escarpments, V-shaped valleys, triangular facets, and tilted footwall areas. However, escarpment morphometry and footwall geometry reveal systematic differences between the “external” segments (PEFS, THFS, and AVFS) and the “internal” segments (AFFS and FIFS), which may be due to mechanical interaction among segments and/or preexisting topography. In addition, transects across all five escarpments show mean scarp slope angles of 22.1°±0.7° for both carbonate and metamorphic bedrock. The slope angle equation for the external segments shows asymptotic behaviour with increasing height. We make an empirical suggestion that slope angle is a function of the long-term fault slip rate which ranges between 0.13 and 0.3 mm/yr. The identified faults may rupture up to magnitude 6.4–6.6 earthquakes. The analysis of the 60-m DEM shows a difference in fault patterns between Western and Northern Attica, which is related to crustal rheology variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号