首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A turbulent energy model is developed to simulate the response of a neutrally stratified atmospheric boundary layer to sudden changes in surface roughness. A mechanism of turbulent energy transfer is proposed, based upon the results of numerical experiments, that explains the distribution of shear stress and hence the distribution of velocity profiles in the atmospheric surface layer. Two length scales associated with the turbulent energy equation are obtained from experimental data and the law of the wall. Turbulent energy is also predicted.The predicted growth of the internal boundary layer is slower than that obtained from mixing-length models. Also, the predicted surface shear stress obtained from the turbulent energy model is in better agreement with field data than that obtained from mixing-length models.  相似文献   

2.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

3.
风沙起动形式与起动假说   总被引:2,自引:0,他引:2  
董治宝 《干旱气象》2005,23(2):64-69
风沙颗粒起动是风沙物理学与沙尘释放研究的重要内容,但是,这一领域的研究很不成熟。本文根据国内外目前的主要研究成果,讨论了风沙起动的形式,将风沙起动理论归纳为风压起动说、升力起动说、冲击起动说、压差起动说、振动起动说、斜面飞升说、猝发起动说、湍流起动说、负压起动说和涡旋起动说等10种假说。进一步将风沙起动假说归纳为以接触力为主的起动学说和以非接触力(气力)为主的起动说两大类。最后认为,风沙起动的影响因素是复杂的,各种学说都有其合理的成分,反映了真理的某个侧面,但试图仅仅靠某一种学说或某一种力来解释风沙的起动是不够完善的。风沙起动过程同时受多种力的作用,只是这些力所起的作用各异,在分析时要分清主次。再者,同一种力在不同性质(如不同密度、粒径和形状等)沙粒的起动过程中所起的作用也可能是不同的,在研究中还需要具体问题具体分析。风沙起动机制尚需全面、深入和科学的研究。  相似文献   

4.
Two local implementations of no-slip boundary conditions are investigated for both the vorticity—streamfunction and momentum—pressure formulations of the time-dependent planar incompressible Navier-Stokes equations, as applied to barotropic ocean circulation modelling. The objective is to determine the extent to which the local accuracy and numerical consistency of these conditions affects the global solution. The effects of a non-local implementation of no-slip conditions for the vorticity—streamfunction equations are also studied. In all cases, boundary condition effects are measured by comparing time-averaged dynamics of turbulent solutions of numerical models based on the two formulations.In the model interior, the energy and enstrophy conserving Arakawa Jacobian is used for the vorticity—streamfunction equations while an extension of the energy and potential enstrophy conserving Arakawa and Lamb finite difference scheme is used for the momentum-pressure equations.Numerical experiments performed with a non-linear model similar to Bryan's barotropic ocean reveal no significant differences between the time-averaged solutions obtained with either of the two formulations, with each using either of the two local boundary conditions. A simple one-dimensional analogue of the vorticity—streamfunction equations is solved algebraically to explain the experimental results. A similar analogue suggests that an apparent inconsistency in the no-slip boundary conditions within the Cox stratified, primitive equation, ocean circulation model should not affect the accuracy or convergence of the global solution.  相似文献   

5.
The effectiveness of closure assumptions implemented in turbulent boundary-layer models is rather uncertain over complex terrain. Different closure schemes for Reynolds shear stress based on the mixing-length concept are compared with data from wind tunnel experiments over complex terrain and the results are analysed on the basis of second-order moment equations. A good estimation of the vertical momentum flux velocity scale turns out to be given by the standard deviation of the vertical velocity while the turbulent kinetic energy scaling gives less satisfactory results in regions where turbulence anisotropy is large. Fairly good results are given by closure models implementing a shear-limited mixing-length already proposed for non-logarithmic wind profiles, while large errors characterize traditional mixing-length formulations.  相似文献   

6.
洋面加热场和高空波动之间位相差的某些经验关系   总被引:1,自引:0,他引:1  
仇永炎  陈国范 《气象学报》1965,37(4):465-475
本文研究洋面加热场同500毫巴槽脊发展之间的关系。洋面加热专指乱流感热交换和潜热交换,根据经验公式算得的。文中前一部分从所选的12次冬季天气过程,探讨加热和槽脊发展之间的经验事实,后一部分选例分析高空槽在加强时和衰退时,加热对厚度变化和涡度变化的作用。分析结果得: (1)当洋面加热最大中心在槽前(相对于槽线而言),槽一般趋于加强,在槽后槽趋于减弱;这种趋势以加热在槽线前后5—10经距处的次数最多,同时槽的移速同加热也有一些关系。 (2)加热极值中心同脊的强度变化,还不能确定出什么关系。 (3)加热在厚度变化中有贡献,加热在槽前,负变厚中心有向槽后偏移的倾向;加热在槽后,负变厚中心有移向槽前的倾向。 (4)加热在槽前有利于槽前产生涡度,加热在槽后有利于槽后耗损涡度。  相似文献   

7.
湿位涡方程及其应用   总被引:4,自引:0,他引:4  
本文在湿绝热、无摩擦条件下,推导了湿位涡方程及其近似表达式。然后通过尺度分析得到了大尺度条件下湿位涡守恒的性质,其形式与干位涡一样。由于考虑了水汽的作用,使用它较干位涡更为方便。最后,我们把湿位涡用于江南岭北3 月有无连阴雨的分析,其结果与预报员经验是一致的。  相似文献   

8.
Based upon the conservation of Ertel potential vorticity and moist potential vorticity, a ‘parcel dynamic’ approach is used to investigate the development of vertical vorticity of a parcel which is sliding down a slantwise isentropic surface. An accurate form of the tendency equation of vertical vorticity is deduced to interpret such slantwise vorticity development (SVD). In addition to those dynamic terms in the traditional vertical vorticity equation, the newly developed accurate form includes several thermal terms associated with the changes in stability, vertical wind shear and baroclinity. It is proved that the combinative impacts of these thermal terms on the development of vertical vorticity can be expressed by a succinct theory of SVD. According to this theory, when the horizontal component of potential vorticity and stability possess opposite signs, and the slantwise isentropic surfaces are very steep, the vorticity development of the down-sliding flow at such isentropes can be dramatic. It is also shown that in a convectively unstable and saturated atmosphere, such vorticity development must be accompanied by the development of a low-level jet. Study of a torrential rain process shows that moist potential vorticity analysis is a powerful tool in the study of torrential rain occurrence. Results from the present study are in agreement with the contentions of earlier workers that moist symmetric instability is the cause of some heavy rainbands.  相似文献   

9.
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.) Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer / Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. The diffusion and convection of turbulence kinetic energy not accounted for in the Prandtl mixing-length concept cause departures of the mean wind profiles from those previously computed, primarily in the regions of strong pressure gradients. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.  相似文献   

10.
Some constraints resulting from a required overall vorticity balance in an ocean forced by a net wind-stress curl are considered. It is pointed out that the Sverdrup balance holds for Ekman-geostrophic flow in an area-averaged sense even in the presence of topography. It is suggested that nonlinear stretching and twisting of vorticity in an inertial boundary current may provide a source of vorticity which may balance a net wind-stress curl, without help of frictional effects at the bottom or sides. It is also suggested that potential vorticity generated by the wind-stress curl can be balanced by other local potential vorticity sources in the top layer. At this stage no proof for the need of bottom or side friction in a generally stratified ocean exists, and a counterexample is also lacking, leaving the question open for further studies.  相似文献   

11.
Numerical simulations of scalar transport in neutral flow over forested ridges are performed using both a 1.5-order mixing-length closure scheme and a large-eddy simulation. Such scalar transport (particularly of CO2) has been a significant motivation for dynamical studies of forest canopy–atmosphere interactions. Results from the 1.5-order mixing-length simulations show that hills for which there is significant mean flow into and out of the canopy are more efficient at transporting scalars from the canopy to the boundary layer above. For the case with a source in the canopy this leads to lower mean concentrations of tracer within the canopy, although they can be very large horizontal variations over the hill. These variations are closed linked to flow separation and recirculation in the canopy and can lead to maximum concentrations near the separation point that exceed those over flat ground. Simple scaling arguments building on the analytical model of Finnigan and Belcher (Q J Roy Meteorol Soc 130:1–29, 2004) successfully predict the variations in scalar concentration near the canopy top over a range of hills. Interestingly this analysis suggests that variations in the components of the turbulent transport term, rather than advection, give rise to the leading order variations in scalar concentration. The scaling arguments provide a quantitative measure of the role of advection, and suggest that for smaller/steeper hills and deeper/sparser canopies advection will be more important. This agrees well with results from the numerical simulations. A large-eddy simulation is used to support the results from the mixing-length closure model and to allow more detailed investigation of the turbulent transport of scalars within and above the canopy. Scalar concentration profiles are very similar in both models, despite the fact that there are significant differences in the turbulent transport, highlighted by the strong variations in the turbulent Schmidt number both in the vertical and across the hill in the large-eddy simulation that are not represented in the mixing-length model.  相似文献   

12.
Variability of the Kuroshio path to the south of Japan plays a central role in the local climate change and exerts tremendous influences on the local atmosphere and ocean. In this study, the response of ocean dynamics, in terms of the eddy kinetic energy (EKE), potential vorticity (PV), relative vorticity, and eddy-mean flow interaction, to the Kuroshio path change is discussed. Kuroshio path south of Japan includes the near-shore non-large meander (nNLM), the off-shore non-large meander (oNLM), and the typical large meander (tLM). Analyses reveal that the distribution of EKE, PV, relative vorticity, and energy exchange between the eddy field and the mean flow respectively varies with the Kuroshio path: (1) The tLM has the maximum EKE along the path; (2) The positive and negative PV are located at the onshore and offshore side of Kuroshio axis, respevetively; (3) The distributions of anomalous relative voritcity of nNLM, oNLM, and tLM are consistent with sea surface height anomalies (SSHAs); (4) The tLM has the largest energy exchange between the eddy field and the mean flow in terms of the rate of barotropic energy conversion. On the other hand, the stability analysis of ocean currents suggests that the three Kuroshio paths south of Japan have their own intrinsic properties of the instability.  相似文献   

13.
位涡及位涡反演   总被引:6,自引:8,他引:6  
张述文  王式功 《高原气象》2001,20(4):468-473
对位涡概念发展史进行了总结并给出位涡反演原理 ,讨论了不同近似模式的位涡表达式及其拉格朗日守恒形式 ;对位涡特性研究方面的新成果作了总结 ;考察大量应用实例并指出存在的不足 ;最后对应用前景作了展望  相似文献   

14.
青藏高原感热气泵影响亚洲夏季风的机制   总被引:6,自引:1,他引:5  
本文回顾了二十年来关于青藏高原感热驱动气泵(TP-SHAP)及其影响亚洲夏季风的研究进展,并从能量(θ)、位涡—加热(PV–Q)、和角动量守恒(AMC)的不同角度阐述其影响机制。指出高原斜坡上的表面感热加热改变了移向高原的大气质块的能量从而出现垂直抽吸的重要性。强调了高原加热产生的位涡强迫在近地层制造了强度大范围广的、环绕高原的气旋式环流,把丰沛的水汽从海洋输运到大陆,为季风对流降水提供充足的水汽条件。证明高原加热还通过改变其上空的温、压场的结构从而制造出高原上空近对流层顶的绝对涡度和位涡的最小值,在角动量平衡约束下,在亚洲季风区激发出与Hadley环流反向的季风经圈环流,从而为季风发生发展提供了大范围上升运动的背景。文中还对近年来有关青藏高原影响亚洲夏季风机制的讨论进行概述,并展望了未来的研究方向。  相似文献   

15.
Abstract

In this note some aspects of the dynamics involved in the process of baroclinic instability are discussed using simple physical arguments. In particular, the connection between the requirement for unstable perturbations to release potential energy from the mean state and the conservation of potential vorticity is examined. It is shown how the conservation of potential vorticity results in perturbation phase propagation relative to the mean flow, which is a necessity for potential energy to be released from the mean state. Eady's (1949) problem is discussed as an illustrative example.  相似文献   

16.
The Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer (PBL) scheme is a second-order turbulence closure model that is an improved version of the Mellor–Yamada scheme based on large-eddy simulation data. It simulates PBL structure and evolution well, particularly over the ocean surface. However, when used with various underlying surfaces in China, the scheme overestimates the turbulent momentum flux and the sensible heat flux. Based on observations of surface fluxes in China, we attempt to improve the MYNN model by modifying the parameters and representation of the turbulence scale. Closure constants and empirical expressions in the diagnostic equation are chosen first, and an additional component of the turbulent heat flux is considered in the potential temperature prognostic equation to improve the surface heat-flux modelling. The modified MYNN scheme is incorporated into a three-dimensional mesoscale model and is evaluated using various underlying surface observations. Amelioration of the surface turbulent fluxes is confirmed at five observational sites in China over different land-use types.  相似文献   

17.
一次辽宁秋季暴雨天气的诊断分析   总被引:1,自引:0,他引:1  
孙欣  蔡芗宁  黄阁 《气象》2007,33(9):83-93
使用1.0°×1.0°NCEP再分析资料,对2006年10月21—22日深秋暴雨在天气形势分析的基础上,进行物理量诊断。结果表明:在有利的环境背景形势下,高位涡从对流层高层向低层伸展并形成湿位涡柱,引起气旋性环流与低涡环流叠加。对流层低层的湿斜压性增强,引起低层的锋区加强及垂直涡度发展,高空入侵干冷空气锲入底层,低层暖湿空气强迫抬升,使地面发展为气旋;高低空急流耦合产生上升气流,同时较强的补偿下沉运动激发上升运动加强,使次级环流加强,触发不稳定能量的释放;低空急流和超低空急流向辽宁输送暖湿空气及能量,对流层中低层形成湿柱并积聚高不稳定能量;中尺度气旋、高低空急流、湿位涡柱、次级环流上升支、地面高水汽含量湿区、高假相当位温出现的时间、强度、位置和结构决定了暴雨的时间和落区。  相似文献   

18.
The influence of ocean circulation changes on heat uptake is explored using a simply-configured primitive equation ocean model resembling a very idealized Atlantic Ocean. We focus on the relative importance of the redistribution of the existing heat reservoir (due to changes in the circulation) and the contribution from anomalous surface heat flux, in experiments in which the surface boundary conditions are changed. We perform and analyze numerical experiments over a wide range of parameters, including experiments that simulate global warming and others that explore the robustness of our results to more general changes in surface boundary conditions. We find that over a wide range of values of diapycnal diffusivity and Southern Ocean winds, and with a variety of changes in surface boundary conditions, the spatial patterns of ocean temperature anomaly are nearly always determined as much or more by the existing heat reservoir redistribution than by the nearly passive uptake of temperature due to changes in the surface boundary conditions. Calculating heat uptake by neglecting the existing reservoir redistribution, which is similar to treating temperature as a passive tracer, leads to significant quantitative errors notably at high-latitudes and, secondarily, in parts of the main thermocline. Experiments with larger circulation changes tend to produce a relatively larger magnitude of existing reservoir redistribution, and a faster growing effective heat capacity of the system. The effective heat capacity is found to be sensitive to both vertical diffusivity and Southern Ocean wind.  相似文献   

19.
位涡理论及其应用   总被引:21,自引:2,他引:19  
寿绍文 《气象》2010,36(3):9-18
位涡是近代天气动力学的重要概念之一。本文主要对位涡理论的某些要点,包括位涡的概念、位涡的守恒性、位涡的分析、位涡思想、位涡反演、湿位涡及位涡理论的发展和应用等作一简要介绍。  相似文献   

20.
The problem of air flow over a sudden change in surface temperature and humidity has been solved using mixing-length theory. The method is similar to that used by P. A. Taylor (1970) with some modifications. The form of the mixing length suggested by Blackadar is used and this allows calculation farther downwind. A vapor diffusion equation is included in the set of conservation equations and a vapor buoyancy term is included in the stability length. The vapor buoyancy is found to enhance significantly the turbulent diffusion but to a lesser degree than does the thermal buoyancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号