首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
西安建筑科技大学结构与抗震实验室和新疆大学结构实验室合作,以一个两层三跨钢框架结构为试验对象,进行了国内首例跨省远程协同子结构混合仿真拟动力试验。试验结果表明:OpenFresco网络平台通讯性能良好,数据远程传输消耗时间可忽略;通过两所大学实验室测得的力、位移、加速度等试验数据的对比分析,表明该试验系统具有良好的精确性及稳定性;通过OpenFresco网络平台,能够准确远程控制异地实验室的MTS试验系统进行协同工作,从而完成结构简单的子结构混合仿真拟动力试验,为下一步进行大型、复杂结构的子结构混合仿真拟动力试验提供了必要的理论和实践基础。  相似文献   

2.
高阶单步力控制拟动力试验方法研究   总被引:2,自引:0,他引:2  
本文采用高阶单步力控制试验方法,提出了减少试验误差的若干处理技术,进行了三层底部框支配筋砌块短肢砌体剪力墙足尺结构的拟动力试验,实现了大刚度多自由度复杂结构拟动力试验。试验结果表明,足尺拟动力试验可以很好地反映结构在真实地震作用下的反应,而采用力控制试验方法在结构恢复力特性进入下降段之前是可行的。  相似文献   

3.
根据结构试验理论和实验设备的特征,阐述了结构抗震试验的特点及发展,重点分析了子结构拟动力试验方法的原理、数值积分算法、加载方式和误差控制;振动台子结构试验的原理、研究成果;实时子结构的原理和时滞等混合试验方法的基本理论,以及大型通用有限元软件及远程协同试验方法在混合试验中的应用。基于各种试验方法的优势与发展,总结出混合试验技术未来的发展方向。  相似文献   

4.
远程协同结构试验方法研究与发展   总被引:2,自引:0,他引:2  
本文对美国“NEES计划”、欧洲“减轻地震风险的欧洲网络”研究计划、日本E-Defense建设及其远程协同试验、中国台湾地区国家地震工程研究中心ISEE计划和由国家基金委资助的正在进行的重点项目“现代结构拟动力地震模拟协同试验方法与系统”(HQH-NSER)进行了简要介绍,叙述了在远程协同试验研究中的一些关键问题及其应用领域,并对未来的发展趋势作一展望。  相似文献   

5.
基于振动台的动力子结构试验界面反力获取方法   总被引:2,自引:0,他引:2  
基于振动台的实时子结构动力试验是一种新型的结构动力试验方法.该试验方法引入了“子结构”这一概念,不仅减小了常规振动台试验对于试验规模的限制,而且克服了拟动力子结构试验中无法考虑加载速率影响的问题.由于该试验方法将整体结构拆分为数值子结构和物理子结构两部分,二者之间通过交界面相互作用力实现实时数据交互,以保证子结构体系与...  相似文献   

6.
拟动力试验是一种重要的结构抗震试验方法。在该类试验中,试件出力大,连接件和支座往往产生滑移与弹性变形,导致试件实际位移与期望位移存在较大偏差,降低试验数据的精度和可靠性。位移外环控制,是在作动器控制回路之外直接以试件位移为控制变量的控制回路,是解决该问题的有效方法。本文阐述了PI(即比例-积分)位移外环控制的原理,分析了在非实时平台实现该控制的延迟不确定问题,详细介绍了在混合试验平台软件Hy Test中的实现架构。采用混合试验平台软件Hy Test及该外环控制方法,完成了阶跃命令试验、单自由度结构拟动力试验和6自由度结构拟动力试验模拟,研究表明该方法稳定可靠,能大幅提高位移控制精度。  相似文献   

7.
郭玉荣    叶哲谦 《世界地震工程》2022,38(3):070-77
离线模型更新混合试验对构件拟静力数据进行恢复力模型参数识别,并更新数值子结构中相应构件的模型参数来提高混合试验精度,但该方法尚缺少真实试验的验证。本文基于课题组开展的足尺RC柱拟静力试验,取恢复力模型为集中塑性铰Ibarra-Medina-Krawinkler(IMK)模型,进行框架结构离线模型更新混合试验研究。结果表明,当物理子结构取为RC足尺柱时,离线模型更新混合试验能获得接近于真实试验情况下结构的地震响应,从而对该方法的有效性进行了试验验证。利用IMK经验公式,将真实试验模型参数识别值按轴压比进行对照修正,应用于不同层数的框架结构地震响应模拟,实现了试验数据的重复利用。  相似文献   

8.
抗震拟动力试验技术研究   总被引:12,自引:0,他引:12  
在全面论述拟动力试验技术的基础上,提出了大刚度多自由度钢筋混凝土结构和砌体结构的拟动力试验技术新方法,即以力控制方式为基础的力-位移混合控制方法,这种方法能实现大刚度多自由度钢筋混凝土结构和砌体结构的拟动力试验。  相似文献   

9.
设计和研制一台大型智能控制压扭多轴加载试验机,形成一个集动静加载、扭剪、常规三轴等功能为一体的多功能土动力试验平台。该试验机具有如下特点:(1)试样尺寸大,高度可达600mm,且可根据试验需求更换大小不同的试样及相应传感器;(2)加载自由度多,可独立施加轴力、扭矩、内压、外压、孔压及相应的位移,实现5个不同物理量的独立控制,从而大大拓宽可施加的应力路径范围;(3)控制智能化,可先将拟进行的应力路径或应变路径写入程序中,试验过程中即可由计算机自动控制。测试结果表明,该试验机的控制精度能够满足土工材料试验的要求。  相似文献   

10.
位移保护下力-控制拟动力试验方法的原理   总被引:1,自引:3,他引:1  
本文提出了大刚度多自由度钢筋混凝土结构和砌体结构的拟动力试验技术新方法,即以力控制方式为基础的力-位移混合控制方法。这种新方法能实现大刚度多自由度钢筋混凝土结构和砌体结构的拟动力试验。  相似文献   

11.
Large‐scale testing and qualification of structural systems and their components is crucial for the development of earthquake engineering knowledge and practice. However, laboratory capacity is often limited when attempting larger experiments due to the sheer size of the structures involved. To overcome traditional laboratory capacity limitations, we present a new earthquake engineering testing method: real‐time distributed hybrid testing. Extending current approaches, the technique enables geographically distributed scientific equipment including controllers, dynamic actuators and sensors to be coupled across the Internet in real‐time. As a result, hybrid structural emulations consisting of physical and numerical substructures need no longer be limited to a single laboratory. Larger experiments may distribute substructures across laboratories located in different cities whilst maintaining correct dynamic coupling, required to accurately capture physical rate effects. The various aspects of the distributed testing environment have been considered. In particular, to ensure accurate control across an environment not designed for real‐time testing, new higher level control protocols are introduced acting over an optimised communication system. New large time‐step prediction algorithms are used, capable of overcoming both local actuation and distributed system delays. An overview of the architecture and algorithms developed is presented together with results demonstrating a number of current capabilities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion. A three‐storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high‐tech equipment in the building subject to nearby traffic‐induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Supported by the recent advancement of experimental test methods, numerical simulation, and high‐speed communication networks, it is possible to distribute geographically the testing of structural systems using hybrid experimental–computational simulation. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. To address this need, an object‐oriented software framework is designed, developed, implemented, and demonstrated for distributed experimental–computational simulation of structural systems. The software computes the imposed displacements for a range of test methods and co‐ordinates the control of local and distributed configurations of experimental equipment. The object‐oriented design of the software promotes the sharing of modules for experimental equipment, test set‐ups, simulation models, and test methods. The communication model for distributed hybrid testing is similar to that used for parallel computing to solve structural simulation problems. As a demonstration, a distributed pseudodynamic test was conducted using a client–server approach, in which the server program controlled the test equipment in Japan and the client program performed the computational simulation in the United States. The distributed hybrid simulation showed that the software framework is flexible and reliable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The experimental results of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building‐platform system subject to ground motion in terms of the absolute co‐ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic‐induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building‐platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high‐tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an experimental study to explore the possibility of using a hybrid platform to ensure the functionality of high‐tech equipment against microvibration and to protect high‐tech equipment from damage when an earthquake occurs. A three‐storey building model and a hybrid platform model were designed and manufactured. The two‐layer hybrid platform, on which the high‐tech equipment is placed, was installed on the first floor of the building to work as a passive platform aiming at abating acceleration response of the equipment during an earthquake and functioning as an actively controlled platform that intends to reduce velocity response of the equipment under a normal working condition. For the hybrid platform working as a passive platform, it was designed in such a way that its stiffness and damping ratio could be changed, whereas for the hybrid platform functioning as an active platform, a piezoelectric actuator with a sub‐optimal velocity feedback control algorithm was used. A series of shaking table tests, traffic‐induced vibration tests and impact tests were performed on the building with and without the platform to examine the performance of the hybrid platform. The experimental results demonstrate that the hybrid platform is feasible and effective for high‐tech equipment protection against earthquake and microvibration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests.This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force.Due to their robustness and portability,individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories.Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages.To conduct a substructure online hybrid test,an extensible framework is developed,which is equipped with a generalized interface to encapsulate each substructure.Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework,simply interfaced with the boundary displacements and forces.A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated.An Internet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments.A series of online hybrid tests are introduced,and the portability,flexibility,and extensibility of the online hybrid test system are demonstrated.  相似文献   

17.
高科技厂房精密仪器工作平台的微振混合控制   总被引:2,自引:1,他引:1  
车辆运行过程中引起的竖向地面微幅振动是影响高科技厂房精密仪器正常运行的重要因素。本文采用隔振与主动控制相结合的混合控制系统,以高科技厂房及精密仪器工作平台的有限元动力方程为基础,采用子优化控制方法建立了高科技厂房及精密仪器工作平台的分析模型,探讨了车辆运行所引起的高科技厂房精密仪器工作平台竖向微幅振动的混合控制分析方法。一座典型的三层高科技厂房的算例分析表明,采用混合控制方法能够有效地减小高科技厂房精密仪器工作平台的竖向微幅振动。  相似文献   

18.
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation, critical parts of a structure are physically tested, while the remaining portions of the system are concurrently simulated computationally, typically using a finite element model. This combination is realized through a numerical time-integration scheme, which allows for investigation of full system-level responses of a structure in a cost-effective manner. However, conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example, the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules (e.g., loading controllers, data acquisition systems, simulation coordinator). These problems can cause the simulation to stop suddenly, and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity large-scale hybrid simulation. In this approach, a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing, mature hybrid simulation framework, which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation (MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation (NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example, in which three piers are experimentally controlled in a total of 18 degrees of freedom (DOFs). This simulation illustrates the effectiveness of the phased approach presented in this paper.  相似文献   

19.
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation,critical parts of a structure are physically tested,while the remaining portions of the system are concurrently simulated computationally,typically using a finite element model. This combination is realized through a numerical time-integration scheme,which allows for investigation of full system-level responses of a structure in a cost-effective manner. However,conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example,the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules(e.g.,loading controllers,data acquisition systems,simulation coordinator). These problems can cause the simulation to stop suddenly,and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity largescale hybrid simulation. In this approach,a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing,mature hybrid simulation framework,which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation(MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation(NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example,in which three piers are experimentally controlled in a total of 18 degrees of freedom(DOFs). This simulation illustrates the effectiveness of the phased approach presented in this paper.  相似文献   

20.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号