首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary  A shallow-water model is used to examine the motion of a barotropic vortex on an equatorial beta plane in the presence of a large-scale mountain range that represents the Sierra Madre of Mexico. The model is initialized with the analyzed large-scale winds of two Atlantic storms, Hurricane Gilbert (1988) and Tropical Storm Hermine (1980). The study is focused on understanding the motion of tropical cyclones in the western Gulf of Mexico. Vortices representative of each storm are found to experienc e southward deflections as they approach the Sierra Madre. The deflections are attributed to the divergent production of relative vorticity associated with vortex stretching as fluid columns are advected over the mountains. While variations of the depth and stratification of the model atmosphere are also found to influence the track of the vortex, the presence of the mountains is shown to produce the most dominant effect. Additional informatio n on the motion of the vortex is also determined through an examination of the asymmetric potential vorticity field. Received November 2, 1999/Revised November 10, 1999  相似文献   

2.
The Ekman boundary layer over orography: An analysis of vertical motion   总被引:2,自引:0,他引:2  
A model of the planetary boundary layer is used to determine the field of vertical motion over large-scale orography. This model represents Ekman boundary-layer dynamics modified by the inclusion of accelerations of the geostrophic wind under the geostrophic momentum approximation. The orography is represented by a circular mountain. The inviscid solution is provided by the sum of a constant translation and a steady, uniform potential vorticity, anticyclonic vortex. The boundary-layer solution vanishes on the mountain, but is matched to the inviscid solution as the top of the boundary layer is approached. The vertical velocity field at the top of the boundary layer is determined by integration of the continuity equation. The field of motion is largely determined by descent from above into the anticyclonic circulation, as in the classical Ekman model. Contributions that arise from the inclusion of accelerations are associated with boundary-layer advection and ageostrophic divergence that produce vorticity tendencies. Finally, the boundary-layer vertical motion is shown to be comparable in magnitude to the vertical motion forced by inviscid flow over the orography, although the distributions of each are significantly different. Effects of mountain asymmetry and a changing pressure field, that can be treated more fully by numerical model simulations, are not considered in the present study.On leave at the University of Colorado, 1990.  相似文献   

3.
Initial mesoscale vortex effects on the tropical cyclone(TC) motion in a system where three components coexist(i.e.,an environmental vortex(EV),a TC,and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically.Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases.However,they may have a more significant impact on the TC track under the following circumstances.First,the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region.This configuration may last for 8 h,and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion.Second,two mesoscale vortices located in the EV circulation may merge,and the merged vortex shifts into the EV inner region,intensifying both the EV and steering flow for the TC,increasing speed of the TC.  相似文献   

4.
贺勤  邱东平  奥凤义  张改生 《气象》1998,24(1):31-34
用28年7-8月历史天气图分析了影响伊克昭盟中,大雨以上降天气系统,并对主要影响系统柴达木低涡的定义,性质和山脉走向对低涡发生,发展的作用及低涡的活动路径,预报方面的问题作了探讨。  相似文献   

5.
The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques–the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also used to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.  相似文献   

6.
In this study, the dynamics of track deflection associated with Tropical Cyclone (TC) Sidr (2007) are explored using a numerical weather prediction model. It is found that (a) the simulated track of Sidr is sensitive to flow, orographic, and model vertical structure that change the environmental steering flow leading to the track deflection. In particular, the track of TC Sidr is deflected northwestward for cases with lower domain height, horizontal domain covering only part of Himalaya mountains, and varying mountain heights; (b) the simulated track of TC Sidr, when compared with GFS reanalysis data, is mainly controlled by its deep-layer environmental steering flow as a point vortex; (c) the northwestward deflection with lower domain height is caused by an artificially larger high pressure at lower levels in the vicinity of the Himalayas, due to the upward propagation of wave energy being reflected by the upper domain boundary; (d) the significant northwestward deflection associated with the varying mountain height cases is due to the cyclone vortex being advected by the northeasterly monsoonal flow, which is blocked by the mountains in the corresponding cases with mountains; (e) the northeastward track deflection after the landfall of Sidr is explained by the addition of the frictional force.In summary, the model vertical domain height and the Himalaya mountain representation play key roles in influencing the accuracy of TC Sidr track simulation, compared with other factors, such as the vertical resolution, at least for TC Sidr.  相似文献   

7.
Summary This is the third in a series of papers to investigate the applicability of the ensemble forecasting (EF) technique in the prediction of tropical cyclone (TC) motion. In the previous two papers, either the environment or the vortex was perturbed and the other unperturbed component was then merged onto the perturbed component at the initial time. In the present study, the separately-perturbed environment and vortex fields are combined at this time. The objective is to determine the extent to, and the synoptic pattern under which, such a combination can improve the TC motion forecast compared with perturbing only one component.The study makes use of the same barotropic model as the previous studies and the same dataset – 66 cases from the Tropical Cyclone Motion Experiment TCM90. Perturbations of the environment and those of the vortex are first generated separately using the breeding of growing modes (BGM) method, and then combined at the initial forecast time. The performance of this combined scheme, labeled as BGMC, is then compared with that of the scheme with only the environment or the vortex perturbations (termed BGME and BGMV, respectively).The BGMC distribution of ensemble forecast tracks are found to be basically similar to those in BGME but the spread is reduced. Some poor forecast members in BGME also become close to the best track in BGMC. The relative skill scores of the BGMC forecasts relative to the best track are almost all positive but those under the perfect model assumption are negative because the control forecast is better. While both BGMC and BGME schemes can improve TC forecast track under transition synoptic conditions, BGMC also achieve a higher success rate under complicated vortex and environment interactions. In general, the BGMC scheme is superior to the BGMV scheme.  相似文献   

8.
Summary A shallow water single level primitive equation model is ideally suited for studying the motion of a tropical cyclone. Three factors seem to be important in the initialization, i.e. the size, intensity and the initial speed and direction of motion of the storm. This study presents the results of sensitivity studies on the above parameters in the definition of a synthetic idealized vortex. The sensitivity studies include results of experimental forecasts for typhoons Betty of 1987 and Dan of 1989. The results of these studies show that the initial size, intensity and direction and speed of motion show considerable sensitivity to the predicted track. Finally a summary of the track forecast errors through 72 hours are presented for these storms.With 8 Figures  相似文献   

9.
山脉地形对热带风暴Fitow结构和运动影响的数值试验   总被引:9,自引:0,他引:9  
段丽  陈联寿  徐祥德 《气象学报》2006,64(2):186-193
热带风暴自东向西穿越琼州海峡时常常与海南西部的强天气相对应,尤其当风暴中心在海峡中部或海峡西端出口处有向西南方向的偏折时。Fitow(0114)是这类热带风暴的一个典型。通过对Fitow热带风暴的研究和分析,揭示了一个事实:Fitow在沿海峡西行过程中,其外围中尺度结构发生明显变化———风暴中心西南象限有一个中尺度对流(MCS)小涡生成和发展。受到这个诱生MCS小涡的“吸引”,Fitow在穿行海南岛北部和琼州海峡时,路径向西南方向偏折。数值模拟结果表明,海南岛中部的五指山地形对Fitow自东向西穿行海峡时的这种结构变化有显著影响:(1)当热带风暴Fitow(0114)自东向西穿过岛屿北部和琼州海峡时,其外围西北气流与山脉的辐合地带往往会诱生出中尺度强对流涡旋系统(MCS)。这种系统经过尺度分离和滤波处理后便会在山脉西北麓显现出来。(2)MCS小涡只生成在地形高度之下的大气层;地形高度之上并不显现这一小涡。用0高度作敏感试验的结果,在相同位置并不生成这种MCS小涡。(3)诱生小涡(MCS)的存在,对Fitow会产生“吸引”作用,使其向西南方向MCS所在处偏折。且MCS越深厚,维持时间越长,对Fitow中心的“吸引”程度越大,其中心向西南方向的偏折和移动越明显。0.0 km高度无MCS小涡时,Fitow中心并无这种偏折,而是向西北方向移动,在雷州半岛登陆。  相似文献   

10.
Summary Convective to planetary scale processes govern the motion and structure of tropical storms. A model with a high resolution and a large domain is required for accurate prediction of a storm's track and intensity. A series of integrations are performed using a primitive equation model and an initial state that defines a tropical storm that later developed into a hurricane in the real atmosphere. Increasing the horizontal resolution or domain of the model improves the forecast track. However only the increase in the horizontal resolution produces a better hurricane structure.Banded structure in the vertical motion field, asymmetries in the low tropospheric winds similar to those observed and upper tropospheric cyclonic outflow develop in high horizontal resolution experiments. It is shown that horizontal advection and pressure gradient terms produce wind tendencies in the low troposphere that displace the vortex in the observed direction. A high pressure area surrounding the central low pressure area appears in the upper troposphere. Around this high pressure area large pressure gradients develop that induce outflow winds in the distal storm area.  相似文献   

11.
Summary In this study, idealised conditions are used to study the influence of vertical structure of the bogus vortex on its motion in numerical models by comparing the resultant forecast tracks. Two vortices were used: one has a cyclonic circulation throughout the troposphere and the other has an upper tropospheric anticyclone. Both vortices have the same structure in the middle and lower troposphere. The two vortices were inserted into four different environmental flows on a beta-plane: (a) a resting atmosphere; (b) a uniform flow; (c) a horozontal shear flow and (d) a vertical shear flow. The results show that the forecast tracks are very sensitive to the vertical structure of the bogus vortex, especially when the environmental flow is very weak, or is westerly and has a cyclonic horizontal shear. However, this sensitivity is reduced in moderate vertical shear. This motion sensitivity is found to arise from the vertical coupling mechanism by which the upper-and lower-level circulations interact with each other when a horizontal displacement occurs between them.The vertical structure of the bogus vortex can also affect the intensity of the model cyclone, depending on the configuration of the environmental flow. In general, the bogus vortex without an upper-level anticyclone will intensify quicker and will develop more intense than the one with an upper-level anticyclone. The vertical coupling mechanism can result in different asymmetric rainfall pattern in cyclone core region depending on the vertical structure of the bogus vortex. The asymmetric divergent flow associated with these convective asymmetries may in turn further influence the vortex motion. It is suggested that care needs to be taken in determining the vertical structure of the bogus vortex in numerical models.With 14 Figures  相似文献   

12.
An experiment is performed to simulate the drag effect of raindrops on the air motion in the atmos-phere by means of fine sand particles precipitating through a liquid fluid. The results suggest that the drag effect of the precipitating particles may cause the downward motion in the column where sand particles (or raindrops) precipitate, and produce the updraft around, thus forming a vertical vortex flow pattern around the precipitation area. This effect is also found to be propagating outward, resulting in a multi-vortex flow field. In the stratified fluid, vortexes can be observed at 2 or 3 levels. In the lower layer, the rotating direc-tion of vortexes varies periodically. In addition, the whole flow field induced by the drag effect of precipitat-ing particles is characterized by clear vacillation. The experimental results obtained in this paper can be used to explain the phenomena of multi-layer clouds and multi-belt rainfall around the severe rain.  相似文献   

13.
In the present study, a new approach is discussed to find out the residual steering flow from the high-resolution global Numerical Weather Prediction (NWP) model-forecasted wind fields, which have been used in the Lagrangian advection model to determine the track of tropical cyclones formed in the Indian Ocean. The Lagrangian advection model is newly developed model and conceptually closer to the dynamical models, which utilizes environmental steering flow and the effect due to earth’s rotation (the beta-effect) to determine the motion of cyclone. In this approach, the effect of environmental flow on the cyclone track is examined by removing the existing cyclone vortex from the steering flow which is determined by potential vorticity approach. A new approach based on vortex pattern matching has been used to identify the cyclone vortex and to remove it from the steering flow. The tracks of five tropical cyclones (viz., Nargis, Khai_Muk, Nisha, Aila and Phyan) which were formed in the North Indian basin during the period 2008–2009 have been generated by the Lagrangian advection model using the proposed scheme. The position errors were computed with respect to the Joint Typhoon Warning Center (JTWC) best track analysis positions and compared with that of without-vortex-removal scheme. The results show that the mean track errors for five cyclones are reduced by 6–35?% for 12–72?h forecast in case of vortex-removal scheme as compared to the without-vortex-removal scheme.  相似文献   

14.
利用中尺度数值模式设计一组高分辨率理想试验,采用位涡趋势方法定量诊断分析热带气旋在登陆我国华东沿海地形时,其运动发生的精细化变化以及不同因子的贡献。结果表明,平地的存在使得登陆热带气旋移速相对更快,当华东沿海地形存在时,热带气旋移速显著增大,这种增速现象主要是由于平地和地形所引起的非对称气流以及相应的引导气流变化所致,这很可能是导致预报路径误差的一个重要原因。平地试验中,陆地在热带气旋低层激发出中小尺度的非对称气流,与之不同的是,实际地形的加入激发出更大尺度并且更强的非对称偏南气流。位涡趋势方法的诊断结果表明,非引导效应总体而言对热带气旋运动贡献较小,这是因为这些因子相互抵消,但在不同的垂直层次上,不同的非引导因子贡献存在明显的差异。  相似文献   

15.
EffectoftheInteractionofDifferentScaleVorticesontheStructureandMotionofTyphoonsChenLianshou(陈联寿)(ChineseAcademyofMet6orologic...  相似文献   

16.
本文研究了在基本气流无切变和有切变的情况下地形对低伟大气大尺度定常运动的影响。从赤道β平面的线性化正压原始方程出发,求得一个解析形式的地形影响函数。对它的分析表明:大气的受迫运动不仅取决于越过山脉的基本气流的方向,而且还与山脉所处的纬度以及山脉的尺度有关。当适度的西风越过山脉时,会在背风侧形成地形槽。在线性模式中,基本气流的东西风切变对地形强迫波的经向伸展范围起限制作用。利用本文的模式,对东南亚近赤道地区的气压场和流场进行模拟,其结果与观测事实定性一致。最后,本文还讨论了越赤道气流通道的形成机制。   相似文献   

17.
Summary Considerable advancements have recently been made in understanding tropical cyclone motion. Based on these new understandings, the requirements for accurate tropical cyclone motion prediction with dynamical models can be specified. Four issues related to dynamical track prediction are the initial specifications of the environmental wind field, the symmetric vortex and the asymmetric vortex structure, as well as the adequacy of the models to predict the time evolution of each of these three components of the total wind field. Recently developed barotropic and limited-region or global baroclinic models are examined in terms of these issues. The capability of the Hurricane Research Division barotropic model to provide skillful track forecasts to 48 h retrospectively substantiates that tropical cyclones motion is governed by barotropic dynamics to first order. Limited-region baroclinic models are demonstrated to have many of the numerical characteristics, physical process representations, and initial condition specifications that will be required to properly predict tropical cyclone tracks. In particular, the semioperational Geophysical Fluid Dynamics Laboratory model most closely addresses all of the above issues, and has demonstrated potential for markedly improved tracks for a small sample of cases. Finally, the inclusion of some aspects of tropical cyclone structure in the initial conditions of global baroclinic models has improved their track predictions. Thus, the outlook is for a significant improvement in dynamical track predictions.With 6 Figures  相似文献   

18.
地形对低涡大暴雨影响的数值模拟试验   总被引:12,自引:2,他引:12  
崔春光  房春花  胡伯威  王中 《气象》2000,26(8):14-18
用MM5模式对1998年6月28 ̄29日长江三峡及其附近的低涡大暴雨过程作了初步的模拟研究。通过两种地表方案模拟的对比表明,四川盆地东侧山地对西南低涡的产生没有明显影响,但对这次低涡暴雨的强度及其分布有重要影响,主要表现在:涡前暖湿气流受大巴山-神农架山脉拦截形成迎风麓大暴雨带,鄂西南山区南坡也有迎风坡暴雨区,降水系统在东移过程中受盆地东侧整个山体阻滞迫使上游降水显著增强,下游降水系统在东移过程中  相似文献   

19.
Investigation of Cb motion in the province of Alberta (Canada)   总被引:1,自引:0,他引:1  
Cb motion is analyzed in the paper. Strom observations were carried out in the province of Alberta (Canada) in 2005 with the help of radar. A new approach, based on determination of the vector of cloud track between radar scans, was used to study motion characteristics. Results of observations have shown that storms moved straight with some offset to the right in most cases. The merging of cells can significantly change storm track in some cases. The data obtained do not permit us to make a conclusion about the impact of seeding on cloud motion.  相似文献   

20.
肖庆农,伍荣生AStudyonFrontalMotionoverOrography¥XiaoQingnonsandWuRongsheng(DepartmentofAtmosphericSciences,NanjingUniversity,Naming...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号