首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
李东永  肖益林  王洋洋  沈骥  刘海洋 《地球科学》2019,44(12):4081-4085
金属稳定同位素体系是示踪板块俯冲对壳幔物质再循环影响的全新工具,因此其在俯冲带的地球化学行为备受关注.Mg同位素在俯冲过程中不发生显著分馏,但大陆玄武岩具有低于洋中脊玄武岩的Mg同位素,这可能是碳酸岩的俯冲再循环导致的.与角闪岩继承原岩的Li同位素组成不同,榴辉岩具有轻于原岩的Li同位素组成,可归因于俯冲折返过程中的动力学扩散、脱水反应或低Li同位素的流体交代.作为变价元素,Fe和Cr的同位素在榴辉岩的形成过程中均不发生显著分馏,但是蛇纹岩的Fe同位素和Cr同位素与氧逸度指标具有相关性,指示氧化还原条件变化时脱水过程或流体交代会导致同位素分馏.   相似文献   

2.
王续文  李宇轩  安芳 《矿床地质》2023,42(6):1214-1228
铁元素是岩浆-热液成矿系统中参与成矿的重要金属元素之一,岩浆-热液矿床中富铁矿物(黄铁矿、磁铁矿、黄铜矿、磁黄铁矿、斑铜矿、毒砂、菱铁矿)的δ56Fe值变化较大(-2.07‰~+1.58‰),指示铁同位素在岩浆演化、流体出溶和热液演化过程中均存在明显的分馏,因此,在约束岩浆-热液成矿系统中成矿金属的迁移-富集-沉淀过程和示踪成矿物质来源方面具有巨大的应用潜力。通过整理和分析前人研究资料,文章总结了岩浆-热液成矿系统岩浆演化、流体出溶和热液演化过程中铁同位素地球化学行为的研究现状。岩浆演化过程中铁同位素会发生显著分馏,如部分熔融过程中,熔体相比残余固相富集重铁同位素;矿物分离结晶会引起残余熔体铁同位素组成的变化,主要受含Fe2+或Fe3+矿物结晶的影响,如磁铁矿分离结晶会导致残余熔体铁同位素组成变轻,总体反映岩浆氧化还原状态对铁同位素分馏的主要控制作用,因此,含矿岩体铁同位素组成及其变化可用于确定岩浆的氧化还原状态。流体出溶是含矿岩浆演化成为岩浆热液矿床的关键过程,出溶流体相对于母岩富集轻铁同位素,但实验研究表明出溶流体铁...  相似文献   

3.
早期贫氧地球如何演化至现今富氧地球是理解地球宜居性形成与演化的关键,但重建地质历史时期地球大气与海洋氧含量仍是地球科学领域的重大挑战.金属稳定同位素的高精度测试分析为示踪地球大气与海洋氧化历史提供了新的研究手段.以Mo、U、Tl、Cr四种氧化还原敏感金属稳定同位素体系为例,详细介绍了氧化还原敏感金属稳定同位素地球化学行为及分馏机理.在此基础上,系统回顾了金属稳定同位素在研究产氧光合作用的起源、大氧化事件(Great Oxidation Event,GOE)、中元古代大气和海洋氧化还原状态、新元古代氧化事件(NOE)等重大科学问题中的研究进展.金属稳定同位素在重建地球表层圈层氧化过程具有广阔的应用前景,对认识地球宜居性的演化历史以及探索其未来发展趋势具有深远意义.   相似文献   

4.
梁正伟  田世洪 《地球科学》2021,46(12):4405-4426
铀“稳定”同位素(238U/235U,通常记为δ238U)目前已经成为非传统稳定同位素领域的研究热点.20世纪人们曾经认为铀同位素不存在分馏,因而铀同位素研究发展缓慢.然而随着分析技术的发展,人们发现自然界中铀同位素238U和235U存在显著的分馏,可以作为良好的示踪工具.迄今为止,已经有大量铀同位素作为古氧化还原指标的研究发表,比如用铀同位素示踪地球近地表环境氧含量随时间的演化以及生物大灭绝与海洋氧化还原状态之间的潜在关系.尽管铀同位素在水圈和生物圈协同演化领域取得了丰硕的研究成果,但仍有不少问题亟待深入解决.例如,生物和非生物还原高价铀的微观反应过程对铀同位素分馏的影响,以及铀同位素如何示踪铀矿物质来源等.系统总结了铀同位素地球化学最近十年的研究进展,希望将来铀同位素在铀多金属矿床成因和高温地球化学领域能有所突破.   相似文献   

5.
氧逸度可以用于定量描述一个体系的氧化还原状态,是地球科学非常重要的一个热力学指标。早期地球的氧逸度及其变化趋势的重建,对大气圈、水圈、生物圈乃至整个地球的起源和演化具有重要的科学意义,也是地球科学长期探索的重要目标。锆石提供了地球上已发现的最古老天然样品,几乎是目前研究早期(冥古宙)地球的唯一可靠对象。近年来的研究发现,锆石中Ce的含量对其母岩浆体系的氧逸度很敏感,并由此发展出了锆石的Ce氧逸度计。这一技术对认识早期地球的氧化还原状态十分关键。文章对锆石Ce氧逸度计进行了简单介绍,进而对早期地壳和地幔的氧化还原状态进行了综合评述。在此基础上,对早期地球几个重要圈层(大气圈、大陆地壳和上地幔)氧逸度的演化及相互间的耦合关系进行了讨论。  相似文献   

6.
幔源岩浆氧化还原状态及对岩浆矿床成矿的制约   总被引:7,自引:5,他引:2  
柏中杰  钟宏  朱维光 《岩石学报》2019,35(1):204-214
岩浆的氧化还原状态是控制许多基本地质过程的关键热动力学参数之一。估算玄武质岩浆和源区岩石氧化还原状态的常用方法主要包括多价元素的价态、多价元素的分配系数、共存矿物对的化学平衡和全岩化学比值。岩石学实验的深入和分析技术手段的快速发展使精确估算岩浆氧逸度成为可能。这有力地促进了对地幔源区成分、岩浆的部分熔融程度和熔融方式与分异演化历史,以及岩浆矿床的成因机制及成矿过程的研究。幔源岩浆的氧化还原状态复杂多变,不仅与构造背景有关,还与地幔深度(压力)、交代作用和部分熔融有着密切联系。而在岩浆到达浅部地壳后,结晶分异、岩浆去气和同化混染等过程也能不同程度地改变岩浆的氧逸度。因此,即使来自同一构造背景的幔源岩浆也呈现出明显的氧逸度不均一性。氧逸度的高低对源区部分熔融过程中金属元素的地球化学行为、岩浆的分异演化趋势、Fe-Ti-V氧化物饱和时间的早晚和S在岩浆中的溶解度具有明显的控制作用。因此,岩浆的氧逸度对钒钛磁铁矿矿床和汇聚板块边缘的岩浆硫化物矿床的成矿过程具有显著的影响。  相似文献   

7.
<正>岩浆氧逸度是岩浆结晶分异时氧化还原状态的一个重要表征参数,研究表明岩浆的氧逸度对多种金属的成矿起明显的制约作用,尤其体现在铜、金等亲硫元素矿床的形成过程中。岩浆氧逸度有多种测试方法,常通过所含矿物变价元素的价态来确定,但受后期风化作用和热液作用的影响较大。Ballard et al.(2002)最早提出利用锆石中Ce4+/Ce3+比值来计算岩浆结晶分异时的相对氧逸度。锆石是中酸性岩浆中广泛存在的副矿物,具有良好的抗风化和抗热液蚀变能力,其中变价元素Ce对氧化还原环境敏  相似文献   

8.
地球科学中铁同位素研究进展   总被引:1,自引:0,他引:1  
21世纪初,铁同位素的高精度分析因多道等离子体质谱仪的引入成为可能。铁在自然界中具有高丰度、多价态和生物可利用性,其同位素地球化学受到广泛关注,并取得巨大的进展。本文综述了铁同位素研究的进展和在地球科学中的应用。这些进展包括:(1)查明了各类陨石的铁同位素组成,并制约了太阳系及早期行星演化过程;(2)调查了地球主要储库的铁同位素组成;(3)积累了大量高、低温常见体系中两相间的铁同位素分馏系数;(4)初步探明了岩浆过程(如部分熔融、地幔交代和岩浆分异等)中的铁同位素分馏行为;(5)初步查明铁同位素在主要低温过程(如风化、早期成岩作用等)中的分馏行为;(6)实例性研究揭示了沉积岩样品铁同位素在示踪古海洋大气氧逸度变化和早期生命演化方面的潜力。随着人们对铁同位素分馏机制理解的加深,各体系中分馏系数的积累,铁同位素将在地球科学的各个方面得到更广泛的应用。  相似文献   

9.
铬(Cr)属于氧化还原敏感元素,在岩浆过程中是一种中度相容和轻度亲铁元素。Cr在硅酸盐地球中主要有三种价态:Cr2+、Cr3+和Cr6+。Cr存在于不同来源的矿物和岩石中,其氧化还原状态和同位素组成可以为其成因、氧化还原条件和相关成矿历史提供有价值的信息。近年来,铬同位素越来越多地应用到现代环境、古环境、行星的演化以及高温地质过程等领域中,而高温地质过程中储库的铬同位素及其分馏机理研究是其他工作的基础。尤其是随着质谱技术的发展,Cr同位素在高温环境中的分馏机制及行为也引起了更多的关注。本文主要介绍不同储库的Cr同位素组成及高温岩浆过程中Cr同位素研究的最新进展。  相似文献   

10.
黄土中硼的同位素组成变化及其气候示踪意义研究   总被引:1,自引:0,他引:1  
自然界中硼的同位素组成变化很大(δ11B=-30‰~+40‰),但在不问类型地质体中的分布或一定地质地球化学过程造成的分馏却有特定的范围。硼同位素分馏的主要原因是流体—固体反应体系的pH条件和水-岩比值变化。硼的这些特殊地球化学性质在不同地质地球化学作用示踪,特别是与流体作用有关的地球化学过程的研究中得到了广泛的应用。近年来有学者利用硼同位素组成示踪古海水的pH变化,但利用硼同位素示踪其它古环境或气候变化的研究却相当少。本文试图通过研究黄土中不同相态硼的同位素组成变化来识别黄土化学风化过程中流体介质的pH条件以及其它与风化作用强度有关的各种信息,并进一步发掘硼同位素组成变化在反映古气候、古环境  相似文献   

11.
随着分析技术的进步,非传统稳定同位素体系在地球化学、天体化学和生物地球化学等研究领域的应用日益广泛。钛(Ti)是一个非常重要的过渡族金属元素,在地球和其他类地球行星中广泛存在。但是由于Ti是一种难熔的、流体不活动性元素,高温地质过程中Ti同位素分馏很小。人们对Ti同位素体系的地球化学应用的关注相对其他非传统稳定同位非常有限。而近年来,随着化学纯化方案的优化以及双稀释剂方法的改进和仪器质谱性能的提高,Ti同位素组成的高精度测试已经能够实现。天然样品中Ti同位素组成的变化随之得以发现,使得学者们能够利用这一新的稳定同位素体系来解决与高温和低温地球化学相关的问题。很快Ti同位素体系地球化学研究成为当前国际地质学界的前沿研究课题和新的发展方向之一。本文首先在简要介绍Ti元素和Ti同位素体地球化学性质的基础上,介绍了Ti元素化学分离和Ti同位素分析方法。随后笔者总结了已有的不同类型球粒陨石和地球样品的质量相关Ti同位素组成研究结果,对硅酸盐地球的Ti同位素组成做了初步评估。前人对高温地质样品的Ti同位素组成研究初步探明Ti同位素在岩浆演化过程,例如部分熔融和结晶分异等重要地质过程中的分馏行为。笔者在此基础上探讨了结晶分异过程中引起Ti同位素分馏的主要控制因素,指出Ti同位素是潜在的研究岩浆演化过程的新工具。最后笔者探讨了Ti同位素地球化学未来的发展方向,以加速我国在Ti同位素地球化学方面的应用研究。  相似文献   

12.
Stable potassium isotopes are one of the emerging non-traditional isotope systems enabled in recent years by the advance of Multi-Collector Inductively-Coupled-Plasma Mass-Spectrometry (MC-ICP-MS). In this review, we first summarize the geochemical and cosmochemical properties of K, its major reservoirs, and the analytical methods of K isotopes. Following this, we review recent literature on K isotope applications in the fields of geochemistry and cosmochemistry. Geochemically, K is a highly incompatible lithophile element, and a highly soluble, biophile element. The isotopic fractionation of K is relatively small during magmatic processes such as partial melting and fractional crystallization, whereas during low-temperature and biological processes fractionation is considerably larger. This resolvable fractionation has made K isotopes promising tracers for a variety of Earth and environmental processes, including chemical weathering, low-temperature alteration of igneous rocks, reverse weathering, and the recycling of sediments into the mantle during subduction. Sorption and interactions of aqueous K with different clay minerals during cation exchange and clay formation are likely to be of fundamental significance in generating much of the K isotope variability seen in samples from the Earth surface and samples carrying recycled surface materials from the deep Earth. The magnitude of this fractionation is process- and mineral-dependent. Comprehensive quantification of pertinent K isotope fractionation factors is currently lacking and urgently needed. Significant fractionation during biological activities, such as plant uptake, demonstrates the potential utility of K isotopes in the study of the nutrient cycle and its relation to the climate and various ecosystems, enabling new and largely unexplored avenues for future research.Of significant importance to the cosmochemistry community, K is a moderately volatile element with large variations in K/U ratio observed among chondrites and planetary materials. As this indicates different degrees of volatile depletion, it has become a fundamental chemical signature of both chondritic and planetary bodies. This volatile depletion has been attributed to various processes such as solar nebula condensation, mixing of volatile-rich and -poor reservoirs, planetary accretional volatilization via impacts, and/or magma ocean degassing. While K isotopes have the potential to distinguish these different processes, the current results are still highly debated. A good correlation between the K isotope compositions of four differentiated bodies (Earth, Mars, Moon, and Vesta) and their masses suggests a ubiquitous volatile depletion mechanism during the formation of the terrestrial planets. It is still unknown whether any of the K isotopic variation among chondrites and differentiated bodies can be attributed to inherited signatures of mass-independent isotopic anomalies.  相似文献   

13.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   

14.
高温下非传统稳定同位素分馏   总被引:5,自引:1,他引:4  
黄方 《岩石学报》2011,27(2):365-382
过去十几年来,非传统稳定同位素地球化学在高温地质过程的研究中取得了的重大进展。多接收诱导耦合等离子质谱(MC-ICP-MS)的应用引发了稳定同位素分析方法的重大突破,使得精确测定重元素的同位素比值成为可能。本文总结了以Li、Fe和Mg同位素为代表的非传统稳定同位素在岩石地球化学研究中的应用。Li同位素目前被广泛地用于地幔地球化学、俯冲带物质再循环和变质作用的研究中,可以用来示踪岩浆的源区性质和扩散等动力学过程。不同价态的Fe在矿物熔体相之间的分配可以产生Fe同位素分馏,可以发生在地幔交代、部分熔融、分离结晶等过程中。岩浆岩的Mg同位素则大致反映其源区的特征,地幔的Mg同位素组成比较均一,这为研究低温地球化学过程中Mg同位素的分馏提供一个均一的背景。此外,Cl,Si,Cu,Ca,U等等同位素体系也具有广阔的应用前景。对同位素分馏机制的实验研究和理论模拟为理解非传统稳定同位素数据提供了必要的指导。实验表明,高温下具有不同的迁移速度的轻、重同位素可以产生显著的动力学同位素分馏,这一分馏可以在化学扩散、蒸发和凝华等过程中发生;同位素在矿物和熔体以及流体相中化学环境的差异使得不同相之间可以发生平衡分馏。而最近的硅酸盐岩浆的热扩散和热迁移实验则揭示了一种"新"的岩浆分异和同位素分馏机制。沿着温度梯度,硅酸盐岩浆可以发生显著的元素和同位素分异,湿的安山岩可以通过这种方式演变成花岗质成分,因此这个过程可能对陆壳的产生和演化有重大影响。如果温度梯度在岩浆作用中能长期存在,热扩散就可以产生稳定同位素的分馏,这一机制有别于传统的平衡和动力学同位素分馏。 而多个稳定同位素体系的正相关关系是示踪热迁移过程的最有力证据。在热扩散过程中,流体承载的物质的浓度和它的索瑞系数有关。但是这个系数对体系的很多参数非常敏感,变化极大,因此对热扩散效应的研究产生极大的困难。对热扩散实验的镁、钙和铁同位素测量表明,同位素比值的变化与体系的化学组成以及总温度无关,只和温度变化的幅度有关,这意味着即使元素的索瑞系数变化多端,某一元素的同位素之间的索瑞系数的差别总为常数。这一发现有助于简化对热扩散和索瑞系数这一基础物理问题的研究 。  相似文献   

15.
金属稳定同位素已经广泛应用于矿床学研究以及找矿勘查。金属来源及其成矿过程是金属矿床研究以及找矿勘查中重点关注的基本核心问题。金属稳定同位素这项新技术进一步提高了我们对地壳中金属来源、迁移和富集的认识。这项新技术的优点是我们可以直接从矿石矿物本身获取信息。在本文中,我们重点关注矿石、水、岩石、土壤、植物等测量出的Fe-Cu-Zn同位素分馏,聚焦于Fe-Cu-Zn同位素从最深部岩浆系统开始一直向上延伸到浅部表生系统的过程中Fe-Cu-Zn同位素如何应用于矿床学研究以及找矿勘查,试图展示这些相对较新的技术可以提供的潜在应用范围。经过系统研究和总结,我们认为金属稳定同位素数据可以从三方面加以利用。首先,地表的植物、水、风化的岩石以及土壤中产生的较大的同位素分馏可以作为地下矿产勘查的指示标志;第二,矿区范围内金属稳定同位素往往具有系统的空间变化规律,可以指示成矿热液空间演化模式和矿体延伸方向;第三,金属元素作为成矿元素,其同位素可以直接有效地约束矿石的形成过程、成因以及源区特征。  相似文献   

16.
铁是生物必需的营养元素,并且生物圈与岩石圈、水圈、大气圈密切联系。因此,了解生物过程的铁同位素地球化学行为,对于示踪铁元素在生物圈内部体系的迁移和循环,以及运用铁同位素示踪生物圈和岩石圈、水圈之间的相互作用都具有重要意义。本文对不同生物体的铁同位素组成特征以及不同生物过程的铁同位素地球化学行为进行了总结。结果表明,生物倾向于优先吸收铁的轻同位素,而且在食物链中随着级别的升高,这种情况越明显。生物诱发过程(包括异化铁还原作用和细菌氧化作用)中,铁只是提供或接受电子,并没有真正进入生物细胞体内,这些过程所产生的铁同位素分馏值和无生物参与氧化还原过程产生的铁同位素分馏值相同。生物(包括微生物、植物、动物和人)吸收过程中,铁进入生物体细胞内,这些过程的铁同位素分馏主要受氧化还原作用所控制。铁同位素在生物学、医学等领域具有很大的应用潜力,有可能会成为这些领域新的示踪工具。  相似文献   

17.
Transition metal stable isotope signatures can be useful for tracing both natural and anthropogenic signals in the environment, but only if the mechanisms responsible for fractionation are understood. To investigate isotope fractionations due to electrochemistry (or redox processes), we examine the stable isotope behavior of iron and zinc during the reduction reaction  + 2e = Mmetal as a function of electrochemical driving force, temperature, and time. In all cases light isotopes are preferentially electroplated, following a mass-dependent law. Generally, the extent of fractionation is larger for higher temperatures and lower driving forces, and is roughly insensitive to amount of charge delivered. The maximum fractionations are δ56/54Fe = −4.0‰ and δ66/64Zn = −5.5‰, larger than observed fractionations in the natural environment and larger than those predicted due to changes in speciation. All the observed fractionation trends are interpreted in terms of three distinct processes that occur during an electrochemical reaction: mass transport to the electrode, chemical speciation changes adjacent to the electrode, and electron transfer at the electrode. We show that a large isotope effect adjacent the electrode surface arises from the charge-transfer kinetics, but this effect is attenuated in cases where diffusion of ions to the electrode surface becomes the rate-limiting step. Thus while a general increase in fractionation is observed with increasing temperature, this appears to be a result of thermally enhanced mass transport to the reacting interface rather than an isotope effect associated with the charge-transfer kinetics. This study demonstrates that laboratory experiments can successfully distinguish isotopic signatures arising from mass transport, chemical speciation, and electron transfer. Understanding how these processes fractionate metal isotopes under laboratory conditions is the first step towards discovering what role these processes play in fractionating metal isotopes in natural systems.  相似文献   

18.
汞作为一种重要的成矿元素,广泛分布于不同地质体中,并参与成岩成矿作用。随着质谱技术的飞跃发展,汞同位素地球化学研究取得引人瞩目的进展。汞同位素被广泛地应用于示踪地球表生生物地球化学过程及汞污染等。近年来,汞同位素又被应用于揭示行星的演化过程、识别地质历史时期大火成岩省及示踪矿床成矿物质来源等方面。本文在前人研究的基础上,对不同地质储库汞同位素组成进行了系统总结。陨石、岩浆岩、变质岩、沉积岩、火山气体等地质储库汞同位素组成变化较大,部分样品还显示非质量分馏信息。本文着重阐述了低温热液矿床(现代热泉、汞矿床、铅锌矿床、锑矿床、金矿床)汞的赋存状态及同位素组成特征,构筑了汞同位素体系的基本格架。结合最新的研究成果,较全面地总结了矿床成矿过程中可能会发生的汞同位素分馏机制。热液矿床中汞同位素的质量分馏可能由流体挥发或者沸腾作用、冷凝作用、氧化还原反应、硫化物沉淀等引起。岩矿石中汞同位素的非质量分馏信息可能是地质历史时期汞光化学作用的产物,或者是继承某一特定的源岩信息所致。因此,未来汞同位素在示踪低温热液矿床的成矿物质来源、刻画成矿流体演化过程方面具有较大的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号