首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

2.
A one-dimensional model of the nocturnal boundary layer (NBL) has been used to investigate the time variation of the NBL height for stationary and horizontally homogeneous synoptic conditions. The time variation of the well known quantity = hflu * has been shown to be related to the wind variation at the top of the NBL. For the simple simulated conditions, this variation depends only on the roughness length and the Coriolis parameter. The value of averaged over the whole night is a function of the friction velocity. An expression is proposed for which is compared with observations. Under stationary external conditions, the new relation improves the determination of the NBL height if compared with the classical relation using a constant value of .  相似文献   

3.
Functional forms of the universal similarity functions A, B (for wind components parallel and normal to the surface stress), and C (for potential temperature difference) are determined based on the generalized theory of the resistance laws for the Planetary Boundary Layer (PBL). The similarity-profile functions for the surface layer are matched with the velocity and temperature-defect profiles that are assumed to have shapes modified by certain powers of nondimensional height z/h, where h is the PBL height. The powers of the outer-layer profile functions are determined, so that the functions become negligible in the surface layer. To close the temperature defect law, an assumption that the temperature gradient across the top of the PBL is continuous with the stratification of the overlying atmosphere is used. The result of this assumption is that nondimensional momentum and temperature profiles in the PBL can be described in terms of four basic ratios: (1) roughness ratio = /h (2) scale-height ratio =|f|h/u*, (3) ambient stratification parameter =h/*, and (4) stability parameter =h/L, where L is the Monin-Obukhov length, z0 is the surface roughness, is the upper-air stratification, u * is the friction velocity, and * is the temperature scale at the surface. For stable conditions, the scale-height ratio can be related to the atmospheric stability and the upperair stratification, and the generalized similarity and Rossby number similarity theories become identical. Under appropriate boundary conditions, function A is explicitly dependent on the stability parameter , while B is a function of scale-height ratio , which in turn depends on the stability. Function C is shown to be dependent on the stability and the upper-air stratification, due to the closure assumption used for the temperature profile.The suggested functional forms are compared with other empirical approximations by several authors. The general framework used to determine the functional forms needs to be tested against good boundary-layer measurements.  相似文献   

4.
Intermittent concentration fluctuation time series were produced with a stochastic numerical model derived from the assumption that the concentration fluctuations at a fixed receptor in a point-source plume can be modelled as a first order Markov process. The time derivative of concentration was assumed to be level-dependent and constrained by a stationary lognormal probability density function. The input parameters required to reconstruct the intermittent time series are the intermittency factor , the conditional fluctuation intensity i p 2 , and the time scale T c . A clipped lognormal probability distribution was used to describe the fluctuation time series. Good agreement between the stochastic simulation and experimental water-channel data was demonstrated by comparing the time derivative of concentration and the upcrossing rates over a range of intermittency factors = 0.7 to 0.01 and fluctuation intensities i w 2 = 2.2 to 7.5.  相似文献   

5.
Summary A comparative study was performed to evaluate the performance of the UK Met Office’s Global Seasonal (GloSea) prediction General Circulation Model (GCM) for the forecast of maximum surface air temperature (Tmax) over the Indian region using the model generated hindcast of 15-members ensemble for 16 years (1987–2002). Each hindcast starts from 1st January and extends for a period of six months in each year. The model hindcast Tmax is compared with Tmax obtained from verification analysis during the hot weather season on monthly and seasonal scales from March to June. The monthly and seasonal model hindcast climatology of Tmax from 240 members during March to June and the corresponding observed climatology show highly significant (above 99.9% level) correlation coefficients (CC) although the hindcast Tmax is over-estimated (warm bias) over most parts of the Indian region. At the station level over New Delhi, although the forecast error (forecast-observed) at the monthly scale gradually increases from March to June, the forecast error at the seasonal scale during March to May (MAM) is found to be just 1.67 °C. The GloSea model also simulates well Tmax anomalies on monthly and seasonal scales during March to June with the lower Root Mean Square Error (RMSE) of bias corrected forecast (less than 1.2 °C), which is much less than the corresponding RMSE of climatology (reference) forecast. The anomaly CCs (ACCs) over the station in New Delhi are also highly significant (above 95% level) on monthly to seasonal time scales from March to June, except for April. The skill of the GloSea model for the seasonal forecast of Tmax as measured from the ACC map and the bias corrected RMSE map is reasonably good during MAM and April to June (AMJ) with higher ACC (significant at 95% level) and lower RMSE (less than 1.5 °C) found over many parts of the Indian regions. Authors’ addresses: D. R. Pattanaik, H. R. Hatwar, G. Srinivasan, Y. V. Ramarao, India Meteorological Department (IMD), New Delhi, India; U. C. Mohanty, P. Sinha, Centre for Atmospheric Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; Anca Brookshaw, UK Met Office, UK.  相似文献   

6.
Low-latitude observations of the stably-stratified planetary boundary layer (SBL) above rough terrain are compared to observations of the mid-latitude SBL mainly through the depth h and its dependence upon surface fluxes. This involves the quantity h/L and the similarity prediction h = (u * L/f)1/2.Mid-latitude observations are consistent with model calculations for nighttime-averaged quantities and their deviations, as functions of latitude and surface roughness, from the equilibrium values found at large t. The above applies to horizontally-homogeneous terrain.Low-latitude observations of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbae% baaaa!37AB!\[\bar \gamma \] and h/L are significantly smaller than mid-latitude values, apparently the result of katabatic flows at the site and not the differences in latitude. This is consistent with model calculations for non-zero slope terrain.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Characteristic features of the convectively driven monsoon-trough boundary layer have been explored using the conserved-variable method of analysis. Aerological observations during the Monsoon Trough Boundary Layer Experiment 1990 (MONTBLEX-90) during 18–20 August have been used to investigate the thermodynamic features of the Convective Boundary Layer (CBL). Thermodynamic parameters such as e , es have been used to study the dynamical aspects of the CBL. Also, mixed-layer heights at an inland station, in the monsoon trough region, obtained from SODAR, are used to document the saturation of the mixed layer after the onset of the monsoon.  相似文献   

8.
Turbulent fluctuations of wind and temperature were measured using a three-component sonic anemometer at 8 m on a 30 m micro-meteorological tower erected at the Indian Institute of Technology (IIT) Kharagpur (22.3° N, 87.2° E), India, as part of the Monsoon Trough Boundary Layer Experiment (MONTBLEX). Diurnal and nocturnal variations of fluxes of sensible heat and momentum were estimated by the eddy correlation technique from 42 observations, each of 10 min duration during 6–8 July in the monsoon season of 1989. The estimated heat flux shows a diurnal trend while the momentum flux shows variability but no particular trend. The nocturnal heat flux changes sign intermittently.Fluctuations of vertical wind velocity wand temperature when normalised with the respective scaling parameters u *and * are found to scale with Z/L in accordance with the Monin-Obukhov similarity hypothesis: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaadEhaaeqaaOGaamiEaiaacIcacaWGAbGaai4laiaadYea% caGGPaWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaaaaa!3FE8!\[\phi _w x(Z/L)^{1/3} \], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabeI7aXbqabaGccaWG4bGaaiikaiaadQfacaGGVaGaamit% aiaacMcadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaaa!40A2!\[\phi _\theta x(Z/L)^{1/3} \] during unstable conditions and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaadEhaaeqaaOGaamiEaiaacIcacaWGAbGaai4laiaadYea% caGGPaaaaa!3D90!\[\phi _w x(Z/L)\], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabeI7aXbqabaGccaWG4bGaaiikaiaadQfacaGGVaGaamit% aiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa!401F!\[\phi _\theta x(Z/L)^{ - 1} \] during stable conditions. Correlation coefficients for heat and momentum flux % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] and uwshow stability dependence. For unstable conditions, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] increases with increasing ¦Z/L¦ whereas uwdecreases. During stable conditions, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] decreases with increasing Z/L while uwdecreases very slowly from a value -0.36 to -0.37.  相似文献   

9.
Six locations across mainland Portugal were selected for exposing Parmelia sulcata, for a one-year period (8 months for one site), with simultaneous measurement of total (dry + wet) deposition (one-month periods). The exposed lichens and the total (dry + wet) deposition were analysed for cobalt contents by INAA (instrumental neutron activation analysis) and ICP-MS (inductively coupled plasma mass spectroscopy), respectively. The designated wet deposition was evaluated through the collected water volume; the designated dry deposition was assessed after the (dried) residual mass of the wet deposition. An excellent agreement between Co contents in exposed lichens and the cumulative (1) Co contents in the dry deposition, (2) dry deposition, and (3) wet deposition has been found for the locations with alternate drought and precipitation months, high dry deposition, and high Co contents in the latter. Continuous rainfall was found to hinder the Co accumulation in the lichen due to its release from the lichen and/or lower Co contents in the dry deposition. At three locations, P. sulcata Co contents, after subtraction of the background (before exposure), equalled or exceeded the Co contents in the cumulative dry deposition at the end of the exposure time. The optimal exposure period for this species likely depends on the exposure conditions.  相似文献   

10.
Several formulations and proposals to determine the value of the radiometric scalar roughness for sensible heatz 0h,r are tested with respect to their performance in the estimation of the sensible heat flux by means of the profile equations derived from Monin-Obukhov similarity theory. The equations are applied to the data set of spatially averaged surface skin temperature and profiles of wind speed and temperature observed in a pasture field during a growing season. The use of a physical model developed for a dense canopy to estimate scalar roughness for sensible heatz 0h,r produced sensible heat fluxH with a correlation coefficientr=0.884, the ratio of means being H s /H=1.19 in a comparison with reference values ofH s . In comparison, a proposal for a fixed value ofz 0h yieldedr=0.887, H s /H=0.879. In both cases, the validity ofz 0h =z 0h,r was assumed. All expressions derived to estimatez 0h,r from a multiple linear regression with such predictors as leaf area index, solar radiation and the ratio of solar radiation to extraterrestrial radiation, were found to produce a better result, withr better than 0.90 and H s /H around 1.0. However, when the constantsc andf of a linear regression equationHs=cH+f are used to evaluate the equations, a marked difference in performance of each formulation appeared. In general, equations with smaller numbers of predictors tend to produce a biased result, i.e., an overestimation ofH at largeH s . These values ofH are used in conjunction with the energy balance equation to derive values of the latent heat fluxLE, which are shown to be in good agreement with the reference valuesLE s , withr greater than 0.97.  相似文献   

11.
Jump or slab models are frequently used to calculate the depth of the convectively mixed layer and its potential temperature during the course of a clear day. Much attention has been paid theoretically to the parameterization of the budget for turbulent kinetic energy that is required in these models. However, for practical applications the sensitivity of the solutions of the model equations to variations in the entrainment formulation and in the initial and boundary conditions is also very important. We analyzed this sensitivity on the basis of an analytical solution for the model which uses the well-known constant heat flux ratio. The initial conditions for the mixed-layer height (h) and potential temperature ( m ) quickly lose their influence. Only the initial temperature deficit is important. The mixed-layer temperature at noon on convective days is insensitive to the entrainment coefficient c. It is governed by the integral of the heat input and by the stable lapse rate. A change in c from 0.2 to 0.5 leads to a variation of 20% in h. This is not very much considering the accuracy in the determination of h from actual observations.  相似文献   

12.
Lidar measurements of the thickness of the atmospheric entrainment zone are presented. The measurements were obtained in central Illinois during 6 days of clear-air convection.A new method was developed to monitor the potential temperature jump across the entrainment zone. A single early morning temperature sounding and continuous lidar measurements of the mixed-layer height provide potential temperature jump values which agree well with in situ observations.Lidar measurements of the thickness of the entrainment zone normalized by mixed-layer depth are presented as a function of a convective Richardson number; these values show reasonable agreement with published laboratory results. The lidar observations span a wider range of mixed-layer depths and contain higher values of the normalized entrainment rate (dh/dt)/w * than those observed in tank studies. Both lidar and tank results show that simple parcel theory does not properly predict entrainment-zone thickness. During this experiment which examined mostly high entrainment conditions, the normalized entrainment-layer thickness was linearly dependent on entrainment rate.  相似文献   

13.
On the determination of the height of the Ekman boundary layer   总被引:1,自引:1,他引:1  
The heighth of the Ekman turbulent boundary layer determined by the momentum flux profile is estimated with the aid of considerations of similarity and an analysis of the dynamic equations. Asymptotic formulae have been obtained showing that, with increasing instability,h increases as ¦¦1/2 (where is the non-dimensional stratification parameter); with increasing stability, on the other hand,h decreases as –1/2. For comparison, a simple estimate of the boundary-layer heighth u determined by the velocity profile is given. As is shown, in unstable stratification,h u behaves asymptotically as ¦¦–1, i.e., in a manner entirely different from that ofh .  相似文献   

14.
A simple kinetic mechanism of nitrate radicals uptake on dry sea-salt NaCl, NaBr surfaces is proposed. The mechanism includes adsorption/desorption equilibrium and unimolecular decomposition of the adsorbed complex: NO3(g) + NaX(s) (NO3-NaX)(s); (NO3-NaX)(s) NaNO3 + X(s) Two techniques were used: the matrix isolation ESR and mass spectrometry. The uptake coefficient () is found to be dependent on exposure time of salt to NO3 for raw coating. The initial (t0) is higher than the observable steady-state obs. At room temperature obs is independent of [NO3] at low [NO3] = 3 × 109 - 1011 cm-3, but it is inversely proportional to [NO3] at concentrations higher than 1012 cm-3. At temperatures above 100 °C, obs becomes independent of [NO3] in a wider range of [NO3]. An increased number of dislocations is supposed to exist in the case of raw coating. Due to a wide spread of the surface sites binding energy with the ionic lattice near dislocations, the part of surface complexes has lower binding energy and "burns" more rapidly. That burning determines the transition from (t0) down to obs.The kinetic parameters and elementary rate coefficients are obtained. The recommended for low atmospheric NO3 concentration are in the range of 0.002 ± 0.04 for NaCl and 0.1-0.3 for NaBr depending on a mechanism of the (t) relaxation.  相似文献   

15.
Summary  The fluctuations of intensity of the Tropical Easterly Jet (TEJ) and its association with the Indian summer monsoon rainfall have been examined using the diagnostics from NCEP/NCAR (National Centre for Environmental Prediction/National Centre for Atmospheric Research) reanalyses project for the period 1986 to 1994. The intensity of TEJ is found to be well correlated with India summer monsoon rainfall. The TEJ is weaker/stronger during the El Ni?o/La Ni?a year of 1987/1988 and is associated with deficient (excess) summer monsoon rainfall over India. A numerical study was carried out for the same period using the Centre for Ocean-Land-Atmosphere studies General Circulation Model (COLA GCM, T30L18) with observed Sea-Surface Temperature (SST). The GCM simulates the TEJ with reasonable accuracy. The strong interannual variability of TEJ during the El Ni?o/La Ni?a years of 1987/1988 are well simulated in the GCM. Like observations, the intensity of the TEJ is positively correlated with the summer monsoon rainfall over India in the model simulation. The intensity of Tibetan anticyclone and diabatic heating over the Tibetan Plateau diminished during the El Ni?o-year of 1987. The divergence centre in the upper troposphere associated with Asian monsoon becomes weaker and shifts eastward during the weak monsoon season of 1987. However, the opposite happens for the strong monsoon season of 1988. Also the middle and upper tropospheric meridional temperature gradient between the Tibetan High and Indian Ocean region decreased (increased) during the weak(strong) monsoon season of 1987 (1988). Received May 27, 1999/Revised March 20, 2000  相似文献   

16.
Summary In this study the trend of the time sequence of the integral aerosol optical depth (k a), as proposed by Unsworth and Monteith, was determined for clear days in summer for the period 1962–1988 in Athens. The trend was found by fitting a third degree polynomial curve and it was concluded that (k a) showed a considerable increase (i.e. from the value of 0.18 to 0.31) in the period 1962–1976 and remained approximately constant until 1979, after which it started decreasing again slowly until 1988. The increase of (k a) in the period 1962–1976 is likely attributable to the rapid development of the city in this period, while the decrease of (k a) after 1979 probably reflects the efficiency of some restrictions which were imposed on the pollutant emissions during this period. In addition, an analysis of the percentage frequency distribution found that while 95% of the values of (k a) ranged from 0.100 to 0.400 in the beginning of the period (1964–1967), in recent years (1984–1987) the same percentage of the values of (k a) ranged from 0.100 to 0.500.With 3 Figures  相似文献   

17.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

18.
Measurements of gradients of wind, temperature and humidity and of the corresponding turbulent fluxes have been carried out over a sparse pine forest at Jädra»s in Sweden. In order to ascertain that correct gradient estimates were obtained, two independent measuring systems were employed: one system with sensors at 10 fixed levels on a 51 m tower and another with reversing sensors for temperature and humidity, covering the height interval 23 to 32 m. Turbulent fluxes were measured at three levels simultaneously. Data from three field campaigns: in June 1985, June 1987 and September 1987 have been analyzed. The momentum flux is found on the average to be virtually constant from tree top level, at 20 to 50 m. The average fluxes of sensible and latent heat are not so well behaved. The ratio of the non-dimensional gradients of wind and temperature to their corresponding values under ideal conditions (low vegetation) are both found to be small immediately above the canopy (about 0.3 for temperature and 0.4 for wind). With increasing height, the ratios increase, but the values vary substantially with wind direction. The ratios are not found to vary systematically with stability (unstable stratification only studied). The ratio of the non-dimensional humidity gradient to the corresponding non-dimensional potential temperature gradient (equivalent to k h /k w ) is found to be unity for (z – d)/L v less than about –0.1 and about 1.4 for near neutral stratification, but the scatter of the data is very large.  相似文献   

19.
A liquid jet of 90 m diameter and variable length has been utilized to determine absorption rates and, hence, mass accommodation coefficients , of atmospheric trace gases. The compounds investigated are HCl (0.01), HNO3 (0.01), N2O5 (0.005), peroxyacetyl nitrate (>0.001), and HONO (0.005). It is concluded that the absorption of these trace gases by liquid atmospheric water is not significantly retarded by interfacial mass transport. The strengths and limitations of the liquid jet technique for measuring mass accommodation coefficients are explored.  相似文献   

20.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号