首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张自超 《岩矿测试》1988,(4):297-300
本文报导了对12个日本“火成岩系列”岩石标准样品的~(87)Sr/~(86)Sr比值和Rb、Sr含量的测定结果。Rb、Sr含量采用同位素稀释法测定,~(87)Sr/~(86)Sr比值单独取样经分离后由质谱计直接测量。对NBS-987和NBS-607标准样品~(87)Sr/~(86)Sr单次测定的分析精度和重复分析的再现性均好于0.03%,NBS-607中Rb、Sr含量测定结果与证书值的最大偏差小于0.6%。直接测定日本“火成岩系列”岩石标样的~(87)Sr/~(86)Sr,与同位素稀释法测定的结果吻合,用不同浓度的稀释剂在不同仪器上测定的Rb、Sr含量在实验误差范围内一致,表明测定的结果可靠。  相似文献   

2.
(LP)MCICPMS方法精确测定液体和固体样品的Sr同位素组成   总被引:52,自引:9,他引:52  
MCICPMS是近年发展起来的高精度固体同位素分析仪器,利用MCICPMS可以精确测定Sr同位素组成,与TIMS相比,分析效率明显提高;对于含有Rb的实际样品,在Rb/Sr比值较小时(Rb/Sr<0.001),可以通过Rb扣除获得准确的87Sr/86Sr比值,而当Rb含量较高时,可以通过建立Rb/Sr与87Sr/86Sr偏差值的线性关系进行再一次校正,同样也可以获得准确的87Sr/86Sr比值.通过这种校正关系,可以直接分析固体微区的Sr同位素组成.  相似文献   

3.
碳酸盐岩锶同位素比值测定中的残渣分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对经HAc溶解后的碳酸盐样品的残渣进行分析,验证了碳酸盐岩中所合非碳酸盐组分的^87Sr/^86Sr同位素比值较高的事实,同时也论证了HCl溶解碳酸盐岩样品的不足,即造成非碳酸盐的溶解,从而导致^87Sr/^86Sr同位素比值质谱测定结果偏高。  相似文献   

4.
利用酸溶法和碱熔法分解天青石样品,经过离子交换分离得到纯净的Sr,测定^87Sr/^86Sr同位素比值,实验结果表明两种样品分解方法得到的^87Sr/^86Sr同位素比值的偏差〈0.0001,证明在天青石锶同位素组成测定中,酸溶法和碱熔法都是可行的;但与碱熔法相比,酸溶法更简易并且利于本底值的控制。  相似文献   

5.
湘中锡矿山锑矿床的Sr同位素地球化学   总被引:21,自引:3,他引:21  
对湘中锡矿山锑矿床围岩灰岩、硅化灰岩、煌斑岩和脉石矿物进行了系统的Sr同位素研究。结果表明,矿区围岩发生了隐性蚀变,灰岩中Sr亏损,而^87Sr/^86Sr高于同时代的海相碳酸盐,这种隐性蚀变很可能是水/岩反应所致。矿体附近的硅化灰岩中Sr更加亏损,而^87Sr/^86Sr明显增加。成矿期方解石的^87Sr/^86Sr较高,成矿体系中变化的W/R比造成了方解石中^87Sr/^86Sr值的明显波动。成矿流体为一富放射成因^87Sr的溶液。成矿流体来自或流经基底地层,流体中的Sr由基底碎屑岩提供,矿质Sb也可能主要来自富Sb的元古宇基底。水/岩反应的理论模拟显示,锡矿山成矿流体中的Sr约为3.0μg/g,^87Sr/^86Sr为0.717;蚀变-成矿体系为一开放体系,矿石的沉淀机制主要为水/岩反应,成矿体系中W/R 比较高。  相似文献   

6.
滇西两个碱性岩体Rb、Sr同位素资料的再认识   总被引:3,自引:0,他引:3  
滇西两个碱性岩体的Rb、Sr同位素研究结果:白云山正长岩同位素年龄为85MaBP,^76Sr/^86Sr的初始比值为0.7097;小桥头石英正长岩^87St/^86Sr的初始比值为0.7038。另据矿物组成和地球化学特征等,表明白云山正长岩类似钠质碱性系列的岩石。  相似文献   

7.
鄂尔多斯白垩系自流水盆地北部为沙漠高原区,南部为黄土高原区。区内经济以农业和畜牧业为主,地下水的污染较弱。地下水中Sr来源于含Sr矿物的溶解。因此,可以利用Sr及^87Sr/^86Sr比值来研究水岩作用和地下水的演化。采自盆地20个Sr及其同位素样品的分析结果表明:在区域上^87Sr/^86Sr比值是不均匀的,西南部^87Sr/^86Sr比值较大(0.711002-0.711570),其他地区。^87Sr/^86Sr比值较小(0.710378-0.710646);在局域地下水系统中,埋深小于100m的浅层地下水,Sr含量较低,^87Sr/^86Sr比值较大,而埋深大于100m的深层地下水,Sr含量较高,^87Sr/^86Sr比值较小,并且沿地下水径流方向,sr的浓度越来越高。苏贝淖湖是自流水盆地北部局域地下水系统的一个排泻区,湖水Sr含量较低,而^87Sr/^86Sr比值较大,其Sr同位素组成特征与浅层地下水一致,表明湖水来源于浅层地下水。  相似文献   

8.
在利用多接收电感耦合等离子体质谱(MC-ICPMS)进行Sr同位素研究中,87Rb对于87Sr干扰严重。岩石样品经化学分离后,若Rb/Sr≤0.0005,可以采用传统的Rb干扰扣除方法对87Sr/86Sr测定值进行准确校正;但如果样品经化学分离后仍含有较高的Rb/Sr比,同量异位素的干扰不能完全消除,则无法准确校正87Sr/86Sr测定值,直接影响测试结果的准确度。本文针对Rb含量较高的地质样品设计两组实验,确定了87Sr/86Sr同位素比值与Rb/Sr元素含量比值的关系曲线,并在理论分析的基础上,提出包含同位素分馏校正在内的重叠干扰校正方法。通过实际地质样品验证,该校正方法在较高含量Rb元素共存(Rb/Sr<0.2)的Sr纯化液中,能够较为准确地测量87Sr/86Sr同位素比值,降低了MC-ICPMS分析地质样品中Sr同位素时对化学分离步骤的要求。而对于Rb/Sr>0.2的地质样品,因仪器分馏效应和记忆效应影响,测试精确度大大降低,无论采用何种校正方法均无法得到准确的Sr同位素组成。  相似文献   

9.
济阳拗陷第三纪玄武岩的Nd—Sr同位素研究   总被引:9,自引:2,他引:9  
本文报道了济阳拗陷29个第三纪玄武岩的Nd,Sr同位素组成。结果表明,该区早、晚第三纪玄武岩的Nd-Sr同位素组成变化且具有一定的区别:早经三纪玄武岩的εNd值为0.70481-0.70830;晚第三纪玄武央的εNd值为0.1-2.3,^87Sr/^86Sr比值为0.70421-0.70530。鉴于εNd与1/Nd有^87Sr/^86Sr与1/Sr之间不存在相关特征,Nb正异常以及SiO2与MgO,Fe2O3 FeO,P2O5呈负相关,与Al2O3呈正相关,但与K2I为不存在相关特征,因此,地壳混染作用并不是第三纪玄武岩同位素组成变化的主要原因。玄武岩^87Sr/^86Sr比值的升高是由热液蚀变造成的,而εNd值的变化而归因于源区混合。如果热液蚀变作用没有发生,这些玄武岩的所有数据点在Nd-Sr相关图上将可能位于地幔系列内部。这表明第三纪玄武岩主要是由DMM和EMI两个端员组分不同程度混合形成,EMII的贡献是次要的。  相似文献   

10.
本文对Rb—Sr等时线的理论基础提出了疑问,並从理论上对初始Rb—Sr体系中变量~(86)Sr与~(87)Sr/~(86)Sr对等时线正确性的影响进行了讨论。从数学上表明,用~(86)Sr作为公分母可增强Rb—Sr等时图上的线性相关.盐说明只有当初始~(87)Sr/~(86)Sr比值形成—水平线,或者在初始时等时图上就存在线性相关的时候才产生线性排列。在初始值为水平线时,线性排列常可得到正确的等时线而给出真实年龄和体系的初始比,而在初始值为线性相关时可产生异常等时线,它没有明确的地质意义。于是视等时线被用来概括迄今文献中所发表的异常等时线,並因此推导出视等时线方程。文中分别论述了分离结晶作用、部分熔融、混合及变质作用对Rb—Sr等时线的影响。可以得出结论,只要初始体系中~(87)Sr/~(86)Sr与~(87)Rb/~(86)Sr间比值满足线性相关,就可得到所观测的Rb—Sr等时线。由于仅根据Rb—Sr同位素数据不能区分正确的等时线与视等时线,因此在解释任何地质体系的Rb—Sr等时线年龄方面必须谨慎。  相似文献   

11.
黄河和长江流域泛滥平原细粒沉积物的Sr同位素组成存在较大差异.前者的87Sr/86Sr变化范围较小,为0.712868~0.718860,平均值为0.715474;后者变化范围较大,为0.71305~0.736502,平均值为0.721438.黄河流域中、上游细粒沉积物的87Sr/86Sr低于下游;而长江流域细粒沉积物的87Sr/86Sr中游高于上、下游,且南侧高于北侧.由Nw向SE,SE,87Sr/86Sr逐渐增加.87Sr/86Sr这种空间变化规律明显受各汇水盆地内地壳岩石平均组成、年龄和化学风化作用强度的制约:岩石的Rb/Sr比值越大、年代越老、化学风化作用越强,87Sr/86Sr比值就越大.87Sr/86Sr比值是识别中国边缘海黄河、长江输运物质的有效参数,其端员值分别为0.719269和0.724312.  相似文献   

12.
滇西南思茅盆地是中国西部重要的中—新生代含钾盐盆地,但其成盐物质来源一直存在争议。文章测定了滇西南思茅 盆地磨黑地区钻孔中盐岩样品的87Sr/86Sr同位素比值,同时结合区域其他含盐带已发表的Sr同位素数据,讨论成盐物质来源。 磨黑地区盐岩的87Sr/86Sr比值介于0.708598~0.709333之间,与思茅盆地其他含盐带盐岩的87Sr/86Sr比值(0.707504~0.711069)一 致,较接近于中新生代海水的87Sr/86Sr比值(0.7068~0.7092),但87Sr/86Sr比值略高于海水,显示有陆源水混合现象。结合Sr同位 素证据与盆地演化史,一些地球化学和矿物特征,作者推测思茅盆地盐岩成盐物质来源主要是海水,存在少量陆源水的混入。  相似文献   

13.
地质样品中Sr同位素比值测定的Rb干扰校正初探   总被引:1,自引:0,他引:1  
在地质样品Sr同位素比值测定中,由于~(87)Rb与~(87)Sr是同质异位素,在质谱分析中~(87)Rb会干扰87Sr的测定,降低了测试数据的准确度和精确度,所以样品化学分离时Rb和Sr的良好分离尤为重要.但是对于高Rb高Sr或高Rb低Sr的样品,要实现Rb和Sr良好分离是比较困难的.  相似文献   

14.
河北平原地下水锶同位素特征   总被引:4,自引:1,他引:4  
本文根据28个样品的测试结果,介绍了河北平原地下水的87Sr/86Sr比值。水的87Sr/86Sr比值变化很大。这些Sr同位素组成的差别反映了平原中水流受区域地质条件控制。文中讨论了Sr同位素的6个分布特征。河北平原地下水的87Sr/86Sr比值均大于现代海水的平均值(0.709073)。平原内第四系地下水(Q4-Q1)从补给区到排泄区的87Sr/86Sr比值随着距离(年龄)增大而系统增大。水文学上年轻的水显示非放射性成因的(初始的)87Sr/86Sr比值,而较老的水则具有明显的放射成因,可达0.71527(δ87Sr为8.74‰)这很可能是通过溶解含水层硅酸盐而增加大陆Sr的结果。  相似文献   

15.
江西相山铀矿田成矿物质来源的Nd、Sr、Rb同位素证据   总被引:14,自引:0,他引:14  
对相山大型火山岩型铀矿田中邹家山和沙洲铀矿床及其赋矿围岩(碎斑熔岩及次花岗闪长斑岩)进行了Nd、Sr、Pb同位素研究。结果表明:成矿期萤石的εNd(t)值(-6.7~-8.3)和初始^87Sr/^86Sr比值(0.7145-0.7207)与赋矿围岩的εNd(t) 值(-6.2~-9.4)和初始^87Sr/^86Sr比值(0.7121-0.7192)相似。在εNd(t)-tl图上,成矿期萤石数据点的投影域与赋矿围岩的基本吻合,均落在相山元古宙基底演化域范围内。成矿期黄铁矿的铅组成在^206Rb/^204Pb-^207Pb/^204Pb关系图上呈线性分布,而火山岩的铅同位素组成位于此相关线低值一端。利用异常铅线的斜率及成矿年龄计算出富铀体质体的形成年龄为144Ma,这与赋矿围岩的成岩年龄(135-140Ma)接近。因此,相山铀矿田成矿物质主要来自富铀的火山-侵入杂岩,而火山-侵入杂岩则是由类似于地表出露的元古宙基底变质岩部分熔融形成的。由引可见,相山铀矿田的成矿物质主要来源于地壳。  相似文献   

16.
河北平原地下水锶同位素形成机理   总被引:5,自引:0,他引:5  
为了研究河北平原地下水锶同位素的来源与形成机理, 对所采水样进行了分析.研究了87Sr/86Sr比值“时间积累效应”: 随着地下水年龄和埋深的增大而增大; 与地下水中过剩4Heexc呈正相关关系, 与δ18O和δD呈负相关关系.探讨了Sr2+与87Sr/86Sr比值的关系, 将地下水分为3类: (1) 中等Sr2+含量与高87Sr/86Sr比值水(Ⅰ类水); (2) 低Sr2+含量与高87Sr/86Sr比值水(Ⅱ类水); (3) 高Sr2+含量与低87Sr/86Sr比值水(Ⅲ类水), 即热水.通过综合分析认为: (1) 河北平原第四系地下水中的放射成因Sr是由富含Na和Rb的硅酸盐矿物风化作用提供的, 主要矿物为斜长石; (2) 黄骅港热水中的放射成因Sr是由碳酸盐溶解形成的, 87Sr/86Sr比值低, Sr/Na比值大; (3) 补给区地下水是由流经火成岩和变质岩区地下水的侧向补给的, 87Sr/86Sr比值中等.第三系地下水放射成因Sr的来源及形成机理尚须进一步研究.   相似文献   

17.
SrNd同位素参数广泛应用于岩石物质来源及其成因研究,但绝大多数研究者在应用这些参数时并未说明它们的误差大小,这种做法并不科学。作者首次利用误差传播定律推导出了有关参数的误差估算公式,这些参数包括Sr同位素的初始比值(87Sr/86Sr)t、Nd同位素的初始比值(143Nd/144Nd)t、εSr(t)、εNd(t)、Nd同位素模式年龄等。Rb、Sr含量的高低及其测定误差决定着(87Rb/86Sr)s的误差,Sm、Nd含量的高低及其测定误差决定着 (147Sm/144Nd)s的误差,(87Rb/86Sr)s的大小及其误差、(87Sr/86Sr)s误差、年龄值大小及其误差共同影响着(87Sr/86Sr)t的误差。同样,(147Sm/144Nd)s的大小及其误差、(143Nd/144Nd)s 的误差、年龄值大小及其误差共同影响着(143Nd/144Nd)t的误差。Nd同位素球粒陨石模式年龄TCHUR和单阶段亏损地幔模式年龄TDM的误差影响因素主要包括(147Sm/144Nd)s的大小、(143Nd/144Nd)s 的大小及这两个比值的误差,而Nd同位素两阶段亏损地幔模式年龄TDM2的误差除上述影响因素之外,还包括年龄值大小及其误差。通过对广西姑婆山4个花岗岩样品SrNd同位素参数及其误差的计算,作者对各个影响因素进行了详细分析,认为采用同位素稀释质谱法测试数据和高精度的年龄数据是获得理想示踪参数的保证,Rb、Sr、Sm、Nd含量沿用微量(包括稀土)元素测试结果的做法是不可取的,对高Rb样品更应该谨慎从事。建议研究者在使用SrNd同位素参数时能够估算这些参数的误差,并在文章中有所说明。  相似文献   

18.
从化石群及壳体同位素看古近纪东营湖湖水化学   总被引:8,自引:1,他引:8  
从“海源陆生化石”、壳体O、C和S同位素等几个新的角度和方法对山东东营凹陷古近纪古湖泊湖水化学性质进行讨论。通过与现生“海源陆生生物”的比较,得出原先认为是“海相”标志的有孔虫、钙质超微化石、沟鞭藻和疑源类、多毛类和钱等实际上是“海源陆生化石”,它们生活以在Cl^-和Na^ 为主的咸水湖泊环境。超微化石S同位素分析表明,渐新世与始新世钙质超微化石的^87Sr/^86Sr比值都明显高于同时期海水的^87Sr/^86Sr比值,而与现代河、湖水的^87Sr/^86Sr比值相近,进一步揭示它们生活的环境不是海,而是与海无关的湖。介形虫壳体O、C同位素分析则表明,古东营湖是一封闭型咸水湖泊,从另一角度也否定了与海连通的可能性。根据不同层段同位素特征讨论了湖水矿化度的相对变化。  相似文献   

19.
王林森  张利 《矿物岩石》2003,23(2):44-48
随着超净化实验室条件的完善以及多接收同位素质谱技术的成熟,铅同位素双稀释法倍受关注。用双稀释法测定铅同位素比值的方法原理,以及^204Pb—^207Pb双稀释剂的配制和标定方法。通过对标准物质NBS981和地质样品的分析测定,表明用双稀释法测定铅同位素比值,可以有效校正由质谱分析造成的同位素分馏效应,从而提高分析结果的精度和准确度。  相似文献   

20.
生物壳体的Sr/Ca、Mg/Ca比值能反映其沉积水体的Sr/Ca、Mg/Ca比值,在一定条件下反映水体的盐度、温度,并分别与宿生水体的盐度、温度呈正比关系。生物壳体的^87Sr/^86Sr比值是恢复盆地古水文条件的一种重要手段。本文以著名的泥河湾盆地小渡口剖面的第28层为实例,力图通过对有孔虫、介形虫、腹足类生物壳体Sr/Ca、Mg/Ca比值与^87Sr/^86Sr比值的对比研究,并结合前人所作的中更新世古地理特征研究,来恢复生物壳体沉积时泥河古湖水的温度、盐度,进而进行古气候、古环境的恢复。研究结果表明:在0.97-0.94Ma间,古泥河湾湖为一陆相湖泊,湖水的温度、盐度变化趋势相吻合,均呈低-高-低的演化特征,可能对应着盆地水体的扩展-退缩-扩展变化。其中,在0.96-0.95Ma间,古泥河湾湖具有较高的温度、盐度特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号