首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
南海沿海季节性海平面异常变化特征及成因分析   总被引:1,自引:1,他引:0  
Based on sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2014,this paper uses Morlet wavelet transform, Estuarine Coastal Ocean Model(ECOM) and so on to investigate the characteristics and possible causes of seasonal sea level anomalies along the South China Sea(SCS) coast. The research results show that:(1) Seasonal sea level anomalies often occur from January to February and from June to October. The frequency of sea level anomalies is the most in August, showing a growing trend in recent years. In addition, the occurring frequency of negative sea level anomaly accounts for 50% of the total abnormal number.(2) The seasonal sea level anomalies are closely related to ENSO events. The negative anomalies always occurred during the El Ni?o events, while the positive anomalies occurred during the La Ni?a(late El Ni?o) events. In addition, the seasonal sea level oscillation periods of 4–7 a associated with ENSO are the strongest in winter, with the amplitude over 2 cm.(3) Abnormal wind is an important factor to affect the seasonal sea level anomalies in the coastal region of the SCS. Wind-driven sea level height(SSH) is basically consistent with the seasonal sea level anomalies. Moreover, the influence of the tropical cyclone in the coastal region of the SCS is concentrated in summer and autumn, contributing to the seasonal sea level anomalies.(4) Seasonal variations of sea level, SST and air temperature are basically consistent along the coast of the SCS, but the seasonal sea level anomalies have no much correlation with the SST and air temperature.  相似文献   

2.
Variations of monsoon wind field in the sea area along the southeastern coast of China during the ENSO events and its influence on the sea level and sea surface temperature (SST) are explored mainly on the basis of the data of monthly mean wind at 850 hPa and five coastal stations during 1973-1987. The results from the analyses of the data and theoretical estimation show that the southwest wind anomalies appeared in the study area during the events, and northeast wind anomalies occurred in general before the events. With the coastline of the area being parallel basically to the direction of the wind, an Ekman transport will result in an accumulation of the water near the coast or a departure of the water from the coast. As a result , the sea level and SST there will be affected markedly. During the events, southwest wind will intensify in the summer, and northeast wind will weaken in the winter. Their total effect is that a large negative anomaly of the sea level and SST will occur. The estimations indi  相似文献   

3.
东海沿海季节性海平面异常成因   总被引:1,自引:0,他引:1  
Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea(ECS) are investigated. The research results show:(1) sea level along the coastal region of the ECS takes on strong seasonal variation. The annual range is 30–45 cm, larger in the north than in the south. From north to south, the phase of sea level changes from 140° to 231°, with a difference of nearly 3 months.(2) Monthly mean sea level(MSL)anomalies often occur from August to next February along the coast region of the ECS. The number of sea level anomalies is at most from January to February and from August to October, showing a growing trend in recent years.(3) Anomalous wind field is an important factor to affect the sea level variation in the coastal region of the ECS. Monthly MSL anomaly is closely related to wind field anomaly and air pressure field anomaly. Wind-driven current is essentially consistent with sea surface height. In August 2012, the sea surface heights at the coastal stations driven by wind field have contributed 50%–80% of MSL anomalies.(4) The annual variations for sea level,SST and air temperature along the coastal region of the ECS are mainly caused by solar radiation with a period of12 months. But the correlation coefficients of sea level anomalies with SST anomalies and air temperature anomalies are all less than 0.1.(5) Seasonal sea level variations contain the long-term trends and all kinds of periodic changes. Sea level oscillations vary in different seasons in the coastal region of the ECS. In winter and spring, the oscillation of 4–7 a related to El Ni?o is stronger and its amplitude exceeds 2 cm. In summer and autumn, the oscillations of 2–3 a and quasi 9 a are most significant, and their amplitudes also exceed 2 cm. The height of sea level is lifted up when the different oscillations superposed. On the other hand, the height of sea level is fallen down.  相似文献   

4.
On the basis of the satellite maps of sea level anomaly(MSLA) data and in situ tidal gauge sea level data,correlation analysis and empirical mode decomposition(EMD) are employed to investigate the applicability of MSLA data,sea level correlation,long-term sea level variability(SLV) trend,sea level rise(SLR) rate and its geographic distribution in the South China Sea(SCS).The findings show that for Dongfang Station,Haikou Station,Shanwei Station and Zhapo Station,the minimum correlation coefficient between the closest MSLA grid point and tidal station is 0.61.This suggests that the satellite altimeter MSLA data are effective to observe the coastal SLV in the SCS.On the monthly scale,coastal SLV in the western and northern part of SCS are highly associated with coastal currents.On the seasonal scale,SLV of the coastal area in the western part of the SCS is still strongly influenced by the coastal current system in summer and winter.The Pacific change can affect the SCS mainly in winter rather than summer and the affected area mostly concentrated in the northeastern and eastern parts of the SCS.Overall,the average SLR in the SCS is 90.8 mm with a rising rate of(5.0±0.4) mm/a during1993–2010.The SLR rate from the southern Luzon Strait through the Huangyan Seamount area to the Xisha Islands area is higher than that of other areas of the SCS.  相似文献   

5.
The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.  相似文献   

6.
A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.  相似文献   

7.
The long-term variation and seasonal variation of sea level have a notable effect on the calculation of engineering water level. Such an effect is first analyzed in this paper. The maximal amplitude of inter-annual anomaly of monthly mean sea level along the China coast is larger than 60 cm. Both the storm surge disaster and cold wave disaster are seasonal disasters in various regions, so the water level corresponding to the 1% of the cumulative frequency in the cumulative frequency curve of hourly water level data for different seasons in various sea areas is different from design water level, for example, the difference between them reaches maximum in June, July and August for northern sea area, and maximum in September, October and November for Southern China Sea. The hourly water level data of 19 gauge stations along the China coast are analyzed. Firstly, the annual mean sea level for every station is obtained; secondly, linear chan ging rates of annual mean sea level are obtained with the stochasti  相似文献   

8.
The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C per decade,with the strongest warming identified in southeastern Vietnam. Although the rate of warming is comparable in summer and winter for the entire basin, the corresponding spatial patterns of the linear trend are substantially different between them. The SST trend to the west of the Luzon Strait is characterized by rapid warming in summer, exceeding approximately 0.6°C per decade, but the trend is insignificant in winter. The strongest warming trend occurs in the southeast of Vietnam in winter, with much less pronounced warming in summer. A positive trend of SST fronts is identified for the coast of China and is associated with increasing wind stress. The increasing trend of SST fronts is also found in the east of Vietnam. Large-scale circulation, such as El Ni?o, can influence the trends of the SST and SST fronts. A significant correlation is found between the SST anomaly and Ni?o3.4 index, and the ENSO signal leads by eight months. The basin averaged SST linear trends increase after the El Ni?o event(2009–2010), which is, at least, due to the rapid warming rate causing by the enhanced northeasterly wind. Peaks of positive anomalous SST and negatively anomalous SST fronts are found to co-occur with the strong El Ni?o events.  相似文献   

9.
On the basis of numerical simulation of the mean circulation and relevant thermal-salinity fields in June with a three-dimensional ocean model (ECOM-si), the model outputs are used as first guess of initial fields for numerical integration of the model equations and the numerical results are applied to investigating the dynamical responses of the Huanghai Sea and the East China Sea (HECS) in the course of a weak land-to-sea cyclone‘s passage over the Huanghai Sea on 15-16 June 1999. Predominance of the dynamic impact of cyclone over the thermal one in June in the HECS is justified using observations and model simulations.The cyclone and its surrounding weather system, i.e,, subtropical high ridge to its south could influence current and thermal fields in the Bohai Sea, the Huanghai Sea and the northern East China Sea even though the intensity of cyclone was rather weak. The response of oceanic currents to the wind stresses driven by the cyclone and its southern subtropical high were strongly characterized by the wind drift with its extent of equivalent scale of cyclone in the horizontal and of Ekman layer in the vertical. The sea response at a given site was closely related to the transient local wind speed and direction,especially was sensitive to the local wind direction,which is demonstrated at three points locating at the southern and western Huanghai Sea and the northern East China Sea. So the sea responses at locations differed considerably from one another. Current responded to the wind stress in a simple way:directly to the wind-driven current and subsequent gradient current and slope current, etc., whereas sea temperature responded to the wind stress in two ways: directly to the cyclone-induced cooling and indirectly to water movements both in the horizontal and the vertical by the cyclone‘ s wind stress. So the sea temperature variation under the influence of cyclone was more complicate than the current. The HECS in response to the cyclone and its ambient weather system was likely to be a fast process and such a response could last at least for more than 1d. Current increased with the duration of wind stress exerted on the surface and decreased with the increasing depth. Affected by the cyclone, the maximum sea surface temperature decreased by almost 1.6℃ during the 24h cyclone.  相似文献   

10.
The Japanese common squid Todarodes pacificus is an economically important species with one year lifespan,which is significantly influenced by climatic and environmental variability. According to the fishery data of the winter cohort of T. pacificus from 2003 to 2012, as well as environmental data and the Oceanic Ni?o index(ONI,which was defined by the sea surface temperature(SST) anomaly in the Ni?o 3.4 region), variations in the SST,chlorophyll a(Chl a) concentration, suitable spawning area(SSA) and sea surface height anomaly(SSHA) on the spawning ground of T. pacificus were examined under the El Ni?o and La Ni?a conditions. Their influences on squid abundance(defined by catch per unit effort, CPUE) were further assessed. The results showed that seasonal changes were found in SST, Chl a and SSA on the spawning ground of T. pacificus. Correlation analysis suggested that annual CPUE was significantly positively correlated with Chl a and SSA(p0.05), but had insignificant relationship with SST(p0.05). Moreover, the El Ni?o and La Ni?a events tended to dominate the changes of SSA and Chl a concentration in the key area between 25°–29°N and 122.5°–130.5°E, driving the variability of squid abundance. However, this influence varied with the intensity of each anomalous climatic event: the weak El Ni?o event occurred, the spawning ground was occupied by waters with enlarged SSA but with extremely low Chl a concentration, leading to low squid recruitment, the CPUE then decreased; the moderate intensity of El Ni?o event resulted in shrunk SSA but with high Chl a concentration on the spawning ground, the squid recruitment and CPUE increased; the moderate intensity of La Ni?a events yielded elevated SSA and high Chl a concentration on the spawning ground, the squid recruitment and CPUE dramatically increased. Our findings suggested that the ENSO events played crucial effects on the incubating and feeding conditions of the winter cohort of T. pacificus during the spawning season and ultimately affected its abundance.  相似文献   

11.
2016年中国沿海海平面上升显著成因分析及影响   总被引:1,自引:0,他引:1  
使用中国沿海及西北太平洋区域的水位、海温、气温、气压和风等水文气象资料,详细分析了2016年中国沿海海平面显著升高的成因及影响。分析结果表明:(1)2012-2016年,中国沿海海平面处于准2 a、4 a、准9 a和准19 a周期振荡的高位,几个周期振荡高位叠加,对该时段海平面上升起了一定的作用;(2)2016年,中国沿海气温和海温较1993-2011年的平均值分别高0.7℃与0.5℃,均处于1980年以来高位;气压较1993-2011年的平均值低0.2 hPa;(3)2016年4月、9月、10月和11月,中国沿海海平面均达到1980年以来同期高位,这4个月的风场距平值在东海以南均明显偏大,且以偏南向和向岸风为主,风生流使得海水向岸堆积,沿海长时间以增水为主,对当月局部海平面上升的贡献率达到40%~80%;(4)2016年,中国沿海降水总体偏多,局部区域降水量达到历史同期最高,加上沿海径流量的增加,对沿海局部海平面升高有一定贡献;(5)2016年9-10月,有5个台风相继影响我国南部沿海,持续的风暴潮增水导致台风影响期间的海平面高于当月平均海平面70~360 mm,风暴潮和洪涝灾害给当地造成直接经济损失超过30亿元。  相似文献   

12.
南海珊瑚礁区34年卫星遥感海表温度变化的时空特征分析   总被引:2,自引:3,他引:2  
选取NOAA OISST数据集的1982-2015年南海月平均海洋表面温度(SST),先对东沙、西沙和南沙礁区海域的多年SST进行时间尺度上的统计,然后对该数据集进行距平场的经验正交函数(EOF)分解,研究南海海表温度的时间和空间年际变化特征。研究显示:(1)不同的礁区海域SST升温趋势不同,东沙礁区海域SST升温趋势最明显(0.216℃/(10 a)),西沙和南沙礁区SST的升温趋势分别为0.180℃/(10 a)和0.096℃/(10 a);(2)西沙和南沙礁区全年处于珊瑚生长的最适海温范围内,东沙一年中有4个月海温较低,SST最高的月份分别集中在7月(东沙礁区)、6月(西沙礁区)和5月(南沙礁区);(3) EOF第一模态的空间分布显示南海SST变化是同相位的,由西北—东南振幅量值递减,在礁区振幅从大到小依次为东沙、西沙、南沙;(4) EOF第一模态时间系数显示南海SST变化与El Niño事件相关。南海海表温度异常场与Niño3.4指数的相关性分析显示两者关联度最高为0.723,平均关联度也高达0.655;南海SST的变化滞后Niño3.4区7~8个月。综上,在全球变暖背景下,南海SST的变化不仅受到El Niño事件的影响,其不断上升也在悄然威胁珊瑚的正常生长。  相似文献   

13.
热带太平洋海温异常对北极海冰的可能影响   总被引:1,自引:1,他引:0  
本文利用1950-2015年间Hadley环流中心海冰和海温资料及NCEP/NCAR再分析资料,研究了热带太平洋海温异常对北极海冰的可能影响,并从大气环流和净表面热通量两个角度探讨了可能的物理机制。结果表明,在ENSO事件发展年的夏、秋季节,EP型与CP型El Niño事件与北极海冰异常的联系无明显信号。而La Niña事件期间北极海冰出现显著异常,并且EP型与CP型La Niña之间存在明显差异。EP型La Niña发生时,北极地区巴伦支海、喀拉海关键区海冰异常减少,CP型La Niña事件则对应着东西伯利亚海、楚科奇海地区海冰异常增加。在EP型La Niña发展年的夏、秋季节,热带太平洋海温异常通过遥相关波列,使得巴伦支海、喀拉海海平面气压为负异常并与中纬度气压正异常共同构成类似AO正位相的结构,形成的风场异常有利于北大西洋暖水的输入,同时造成暖平流,偏高的水汽含量进一步加强了净表面热通量收入,使得巴伦支海、喀拉海海冰异常减少。而在CP型La Niña发展年的夏季,东西伯利亚海、楚科奇海关键区受其东侧气旋式环流的影响,以异常北风分量占主导,将海冰从极点附近由北向南输送到关键区,海冰异常增加,而净表面热通量的作用较小。  相似文献   

14.
厄尔尼诺和台风共同影响下的7月份黄、东海海温变化   总被引:1,自引:0,他引:1  
张守文  王辉  姜华  宋春阳  杜凌 《海洋学报》2017,39(12):32-41
基于历史海温数据和台风路径数据,研究了厄尔尼诺/拉尼娜(El Niño/La Niña)背景下7月份中国近海海温变化特征。结果表明:7月黄、东海海温异常与El Niño/La Niña有显著相关关系,OISST和GODAS海温数据与Niño3指数同步相关系数分别为-0.32和-0.45。El Niño年7月,黄、东海海表温度异常低于-0.5℃的概率超过60%;La Niña年7月,黄海海温异常高于0.5℃的概率约有60%;正常年7月,海温异常的空间分布与El Niño年相反,但量值偏低。El Niño年7月,中国近海及邻近区域大气异常能够给局地带来更多降水;同时,受El Niño背景场的影响,入侵黄、东海的台风强度更强、影响时间更长。大尺度的降水和台风活动的影响是导致黄、东海海温异常降低的重要原因。因此,分析和预测7月份中国近海海温异常,在充分考虑El Niño/La Niña背景场的基础上,需要结合局地的大尺度降水和台风的影响同时分析,这为特定背景下结合不同时间尺度上的因素共同分析中国近海海温变化提供了一种思路。  相似文献   

15.
《Oceanologica Acta》1999,22(3):249-263
Mean conditions, seasonal, and ENSO-related (El Niño Southern Oscillation) variability in the vicinity of Wallis, Futuna, and Samoa islands (13°–15° S, 180°–170° W) over the 1973–1995 period are analysed for wind pseudo-stress, satellite-derived and in situ precipitation, sea surface temperature (SST) and salinity (SSS), sea level, and 0–450 m temperature and geostrophic current. The mean local conditions reflect the presence of the large scale features such as the western Pacific warm pool, the South Pacific Convergence Zone (SPCZ), and the South Pacific anticyclonic gyre. The seasonal changes are closely related to the meridional migrations of the SPCZ, which passes twice a year over the region of study. During the warm phase of ENSO (El Niño), we generally observe saltier-than-average SSS (of the order of 0.4), consistent with a rainfall deficit (0.4 m yr−1), a hint of colder-than-average surface temperature is also identified in subsurface (0.3°C), a weak tendency for westward geostrophic current anomalies (2 cm s−1 at the surface), a sea level decrease (5–10 cm), together with easterly (5 m2s−2) and well marked southerly (10 m2s−2) wind pseudo-stress anomalies. Anomalies of similar magnitude, but of opposite sign, are detected during the cold phase of ENSO (La Niña). While these ENSO-related changes apply prior to the 1990s, they were not observed during the 1991–1994 period, which appears atypical.  相似文献   

16.
利用1958—2019年的观测和再分析数据集,对冷、暖两类厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)事件与后期华东地区春季降水之间的关系进行了分析。结果表明:(1)在暖ENSO事件中,华东春季降水量与前冬季ENSO海面温度异常存在较强的正相关关系。在冷ENSO事件中,这种强正相关向内陆地区西移,主要集中在江西和湖南。(2)暖ENSO事件通常会导致浙江、江苏和福建等沿海省份春季降水量过剩,而冷ENSO事件往往导致江西和湖南降水偏少。这归因于ENSO对大气环流的非线性影响。(3)与暖ENSO事件相比,冷ENSO事件引起的海面温度异常中心明显西移,造成异常低层大气环流的西移,最终导致华东降水的西移效应。(4)通过分析和发现,强调了华东春季降水对ENSO的非线性响应,这对华东地区的季节性气候预测具有重要意义。  相似文献   

17.
Positive SST anomalies usually appear in remote ocean such as the China seas during an ENSO event.By analyzing the monthly data of HadISST from 1950 to 2007,it shows that the interannual component of SST anomalies peak approximately 10 months after SST anomalies peak in the eastern equatorial Pacific.As the ENSO event progresses,the positive SST anomalies spread throughout the China seas and eastward along the Kuroshio extension.Atmospheric reanalysis data demonstrate that changes in the net surface heat flux entering into the China seas are responsible for the SST variability.During El Ni o,the western north Pacific anticyclone is generated,with anomalous southwester lies prevailing along the East Asian coast.This anticyclone reduces the mean surface wind speed which decreases the surface heat flux and then increases the SST.The delays between the developing of this anticyclone and the south Indian Ocean anticyclone with approximately 3–6 months cause the 2–3 months lag of the surface heat flux between the China seas and the Indian Ocean.The northwestern Pacific anticyclone is the key process bridging the warming in the eastern equatorial Pacific and that in the China seas.  相似文献   

18.
Changes and fluctuations in sea surface temperature (SST) around the South African coast are analysed at a monthly scale from 1982 to 2009. There is a statistically significant negative trend of up to 0.5 °C per decade in the southern Benguela from January to August, and a cooling trend of lesser magnitude along the South Coast and in the Port Elizabeth/Port Alfred region from May to August. The cooling is due to an increase in upwelling-favourable south-easterly and easterly winds. There is a positive trend in SST of up to 0.55 °C per decade in most parts of the Agulhas Current system during all months of the year, except for KwaZulu-Natal where warming is in summer. The warming was attributed to an intensification of the Agulhas Current in response to a poleward shift of westerly winds and an increase in trade winds in the South Indian Ocean at relevant latitudes. This intensification of the Agulhas Current could also have contributed to the coastal cooling in the Port Alfred dynamic upwelling region. The El Niño Southern Oscillation (ENSO) is significantly positively correlated at a 95% level with the southern Benguela and South Coast from February to May, and negatively correlated with the Agulhas Current system south of 36° S. The correlation with the Antarctic Annular Oscillation is weaker and less coherent. El Niño suppresses upwelling along the coast, whereas La Niña increases it. Although there does not seem to be a linear relationship between the strength of the ENSO and the magnitude of coastal SST perturbation, El Niño and La Niña appear to be linked to major warm and cool events, respectively, at a seasonal scale in summer in the southern Benguela and along the South Coast. However, care must be taken in interpreting low-resolution reanalysed climate data (ERA40 and NCEP) and optimally interpolated Reynolds SST, such as used here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号