首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
湖泊沉积,特别是内陆高山封闭湖泊沉积是古气候研究的重要载体,可以高分辨率、敏感地记录连续的古气候环境变化。选取祁连山中段天鹅湖沉积岩芯TEB孔的10个陆生植物残体进行AMS 14C测年并建立年代框架,结合对总有机碳(TOC)含量、矿物成分及元素相对含量等指标的分析结果,重建了天鹅湖3 500年来的沉积环境变化特征。初步研究结果表明:碳酸盐含量变化主要受控于地下水补给量的变化,进而反映区域降水量,1 534 BC~1 300 AD期间,天鹅湖区降水呈减少的趋势,尤其是中世纪暖期(720~1 300 AD),是3 500年来最干旱的时期;小冰期开始于1 300 AD,共出现三次降水较多的时期,1 600~1 730 AD为小冰期最盛期。受西风环流影响,天鹅湖沉积记录了该区域中世纪暖期相对暖干,而小冰期较为冷湿的变化特征。同时,该湖记录的小冰期气候相比于中世纪暖期更不稳定。  相似文献   

2.
Increasing interest in global climate change has led to attempts to understand and quantify the relationship between chemical weathering processes and environmental conditions, especially climate. This interest necessitates the identification of new climate proxies for the reconstruction of two important Earth surface processes: physical erosion and chemical weathering. In this study, an AMS 14C‐dated 2.8‐m‐long sediment core, GH09B1, from Lake Gonghai in north‐central China was subjected to detailed geochemical analyses to evaluate the intensity of chemical weathering conditions in the catchment. Multivariate statistical analysis of major and trace elemental data of 139 subsamples revealed that the first principal component axis PCA1 explained ~53% of the variance in the assemblage of elements/oxides with significant positive correlations between PCA1 scores and the separation of mobile and soluble elements/oxides from the immobile and resistant elements/oxides, which is thus able to indicate the chemical weathering in the catchment. These results are supported by the down‐core trends of other major and trace elemental ratios of chemical weathering intensity as well as by pollen data from the same core. Variations in PCA1, chemical index of alteration (CIA), Rb/Sr ratio and other oxides ratios indicate stronger chemical weathering due to a wet climate during the Medieval Warm Period (MWP). However, the MWP was interrupted by an interval of relatively weaker chemical weathering conditions from AD 940–1070. Weak chemical weathering under a dry climate occurred during the Little Ice Age (LIA), and increased chemical weathering intensity during the Current Warm Period (CWP). Our proxy records of chemical weathering over the last millennium correlate well with the available proxy records of precipitation from Gonghai Lake as well as with the speleothem oxygen isotope record from Wanxiang Cave, but do not show a significant correlation with the temperature record in N China, suggesting that the chemical weathering intensity in the study area was mainly controlled by the amount of rainfall rather than by temperature. We conclude that high resolution lacustrine sediment geochemical parameters can be used as reliable proxies for climate variations at centennial‐decadal time scales.  相似文献   

3.
The δ13C values of 23 unevenly spaced guano samples from a 17-cm long clay sediment profile in Gaura cu Musc? Cave (GM), in SW Romania, made it possible to preliminarily characterize the Medieval Warm Period summer hydroclimate regime. The beginning of the sequence (AD 990) was rather wet for more than a century, before becoming progressively drier. After a brief, yet distinct wet period around AD 1170, drier conditions, with a possible shift from C3 to a mixed C3-dominated/C4 type vegetation (2 ‰ lower δ13C values), prevailed for almost half a century before the climate became colder and wetter at the onset of the Little Ice Age, when bats left the cave. The guano-inferred wet and dry intervals from the GM Cave are mirrored by changes in the color and amount of clay accumulated in the cave. They also agree well with reconstructions based on pollen and charcoal from peat bogs and δ13C and δ18O on speleothems from other Romanian sites. Overall, these results indicate that the δ13C of bat guano can provide a sensitive record of the short-term coupling between local/regional climate and the plant–insect–bat–guano system.  相似文献   

4.
This paper presents quantitative climate estimates for the last millennium, using a multi-proxy approach with pollen and lake-level data from Lake Joux (Swiss Jura Mountains). The climate reconstruction, based on the Modern Analogue Technique, indicates warmer and drier conditions during the Medieval Warm Period (MWP). MWP was preceded by a short-lived cold humid event around AD 1060, and followed by a rapid return around AD 1400 to cooler and wetter conditions which generally characterize the Little Ice Age (LIA). Around AD 1450 (solar Spörer minimum), the LIA attained a temperature minimum and a summer precipitation maximum. The solar Maunder minimum around AD 1690 corresponded at Joux to rather mild temperatures but maximal annual precipitation. These results generally agree with other records from neighbouring Alpine regions. However, there are differences in the timing of the LIA temperature minimum depending on the proxy and/or the method used for the reconstruction. As a working hypothesis, the hydrological signal associated with the MWP and LIA oscillations at Lake Joux may have been mainly driven by a shift around AD 1400 from positive to negative NAO modes in response to variations in solar irradiance possibly coupled with changes in the Atlantic meridional overturning circulation.  相似文献   

5.
Holocene lacustrine sediments from two isolated lakes in north China are investigated. Based on palaeoclimatic significance of independent proxies in lake sediments, Holocene chemical weathering, and hence climate change, has been reconstructed for dated sediment cores from Daihai Lake and Aibi Lake. During early to mid-Holocene, higher weathering intensity occurred in the Daihai catchment under warm and humid climate conditions, and this reached a maximum at ∼5 kyr BP. However, synchronous proxy shifts from the two widely separated, isolated lake sediments indicate that there was a cool climate event during the early to mid-Holocene transition. This is characterized by reduced weathering in each catchment, low δ 13 C and δ 18 O of authigenic carbonate, and by lake level fluctuations. These might correspond to a global cooling signal identified in lakes, oceans, mollusc sequences, and polar ice cores, typically centred between ∼8.0 and 8.5 kyr BP. Dry conditions were experienced in Greenland, the North Atlantic and surrounding regions, and in broad monsoonal regions including Daihai at this time. However, recent extensive evidences as well as our data from the Aibi Lake sediments show that cool but wet conditions occurred in the central Eurasian continent at this time. After ∼2.5 kyr BP, a significant shift of independent sediment proxies indicates the beginning of the Neoglaciation with a higher frequency of fluctuations, including both the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Our continental records provide new evidence of the Holocene climate variability with global significance and highlight the different spatial nature of the response to oscillations associated with different climate patterns.  相似文献   

6.
In this study, we synthesized the fossil pollen data from 10 lake sediments and 2 land cores to integrate the alteration of forest covered areas in northern Taiwan with changes in humidity and temperature over the last 2000 years. The abundance of arboreal pollen, fern spores and Tsuga pollen in the pollen and spore assemblages were used as indicators. Our results suggested that the climate in northern Taiwan was stably cool and dry during 2000–1000 cal. yr BP, but changed to wet and warm during 1000–500 cal. yr BP, which corresponded to the Medieval Warm Period (MWP). In addition, an increased density and dispersal of Tsuga pollen corresponding to 500–200 cal. yr BP was observed, which corresponded to the Little Ice Age (LIA). In recent years, a decline in Tsuga pollen density and increased fern spore density has been observed, which indicates an increase in temperature associated with elevated rainfall. Based on the synthesized data set, we conducted GIS mapping of such changes in the north of Taiwan over time. The results revealed that the temporal and spatial climate changes could be inferred from the palynological GIS mapping method, and that the fluctuations in temperature over time matched well with the global climate events, including MWP, LIA and recent warming.  相似文献   

7.
Several drill cores were obtained from a laminated, actively forming flowstone from a shallow cave in Austria. Highly resolved petrographic and geochemical analyses combined with multi‐annual cave monitoring reveal a distinct sensitivity of flowstone growth and composition to late Holocene meteoric precipitation. The regular sub‐millimetre‐scale lamination consists of thicker, translucent laminae and thinner (organic) inclusion‐rich laminae. There is also a macroscopic millimetre‐scale banding of darker and lighter bands comprising several laminae. Stable isotope analyses of drill cores and modern calcite precipitates show a pronounced positive covariation of δ13C and δ18O values indicative of kinetic isotope effects. Comparing the isotope values with petrography shows gradual changes across several of the annual laminae, i.e. changes of several per mille on a multi‐annual to decadal timescale. The stable isotope and trace‐element composition, as well as the flowstone petrography, are mainly controlled by the variable drip‐water discharge controlling the water‐film thickness and water residence time on the flowstone surface and consequently the intensity of CO2‐degassing, kinetic isotope enrichment and concomitant calcite precipitation. Drill core PFU6 provides an isotope record of the last ca. 3000 years at near‐annual resolution. A distinct phase of low C and O isotope values – interpreted as increased discharge and hence higher meteoric precipitation – occurred from ca. 300 to 140 a b2k (second half of the Little Ice Age) and another wet interval occurred around 700 a, corresponding to reported Medieval glacier advances. The Roman Warm Period was also dominated by relatively wet conditions, although significant decadal variability prevailed. Increased precipitation further characterized the intervals from ca. 2480 to 2430 and 2950 to 2770 a. Dry conditions persisted during the Medieval Climate Anomaly, although this trend towards reduced precipitation started earlier. The highest C isotope values of the last 2 ka are recorded around 750 a and another dry phase is centred at 1480 a. This new record shows that inter‐annual to decadal oscillations are a dominant mode of variation during the last 3 ka in the Alps. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
We used a 55-cm sediment core from shallow Chaiwopu Lake in the central Tianshan Mountains of Xinjiang, northwest China, to investigate climate and environmental changes in this arid region over the past ~150 years. The core was dated using 137Cs. We compared temporal changes in several sediment variables with recent meteorological and tree-ring records. Organic matter had a positive correlation with the Palmer Drought Severity Index in the central Tianshan Mountains, and the δ13C of organic matter had a positive correlation with regional temperature. We applied constrained incremental sum-of-squares cluster analysis to element concentrations in the core and identified three distinct zones: (1) 55–46 cm, ~1860–1910, (2) 46–26 cm, ~1910–1952, and (3) 26–0 cm, 1952–present. Between 1880 and 1910 AD, following the Little Ice Age (LIA), the sediment environment was relatively stable, climate was cold and dry, and the lake water displayed high salinity, in contrast to conditions during the LIA. During the LIA, westerlies carried more water vapor into Central Asia when the North Atlantic Oscillation was in a negative phase, and encountered the enhanced Siberia High, which probably led to increased precipitation. In the period 1910–1950 AD, the lake was shallow and the regional climate was unstable, with high temperatures and humidity. In the last ~15–20 years, human activities caused an increase in sediment magnetic susceptibility, and heavy metal and total phosphorus concentrations in the sediment were substantially enriched. Mean annual temperature displays a warming trend over the past 50 years, and the lowest temperature was observed in the 1950s. There has been an increase in annual total precipitation since the 1990s. The combined influences of climate and human activity on the lake environment during this period were faithfully recorded in sediments of Chaiwopu Lake. This study provides a scientific basis for environmental management and protection.  相似文献   

9.
Carbon isotope ratio (δ13Corg) values of organic matter in lake sediments are commonly used to reconstruct environmental change, but the factors which influence change are varied and complex. Here we report δ13C values for sediments from Erlongwan maar lake in northeast China. In this record, changes in δ13C cannot be explained by simple changes in aquatic productivity. Instead, values were likely influenced by differences in the ratio between planktonic and benthic algae, as indicated by the remains of diatoms. This is because the variation of δ13Corg in algae from different habitats is controlled by the thickness of the diffusive boundary layer, which is dependent on the turbulence of the water. Compared with benthic algae, which grow in relatively still water, pelagic algae are exposed to greater water movement. This is known to dramatically reduce the thickness of the boundary layer and was found to cause even more severe δ13C depletion. In Erlongwan maar lake, low values were linked to the dominance of planktonic diatoms during the period commonly known as the Medieval Warm Period. Values gradually increased with the onset of the Little Ice Age, which we interpret as being driven by an increase in the proportion of benthic taxa, due to effect of the colder climate. The increase in planktonic diatoms at the end of the Little Ice Age, linked to higher temperature and a reduction in ice cover, resulted in a further decline in δ13Corg.  相似文献   

10.
A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ~AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ~AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ~250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.  相似文献   

11.
We investigated mineral aerosol (dust) deposition in the Aral Sea with intention to understand the variability of dust in central Asia and its implications for atmospheric circulation change in the late Holocene. Using an 11.12-m sediment core of the lake, we calculated bulk sediment fluxes at high time-resolution and analyzed grain-size distributions of detrital sediments. A refined age-depth model was established by combined methods of radiocarbon dating and archeological evidence. Besides, a principal component analysis (PCA) of grain-size fractions and elements (Fe, Ti, K, Ca, Sr) was used to assess the potential processes controlling detrital inputs. The results suggest that two processes are mainly relevant for the clastic input as the medium silt fractions and Ti, Fe and K are positively correlated with Component 1 (C1), and the fine size fractions (<6 μm) are positively correlated with Component 2 (C2). Taking the results of the PCA, geological backgrounds, clastic input processes into account, we propose that the medium silt fractions and, in particular, the grain-size fraction ratio (6–32 μm/2–6 μm), can serve as indicators of the variability of airborne dust in the Aral Sea region. On the contrary, the fine size fractions appear to be contributed mainly by the sheetwash processes. The bulk sediment deposition fluxes were extremely high during the Little Ice Age (LIA; AD 1400–1780), which may be related to the increased dust deposition. As indicated by the variations of grain-size ratio and Ti, the history of dust deposition in central Asia can be divided into five distinct periods, with a remarkably low deposition during AD 1–350, a moderately high value from AD 350–720, a return to relatively low level between AD 720 and AD 1400 (including the Medieval Warm Period (MWP, AD 755–1070)), an exceptionally high deposition from AD 1400 to 1940s and an abnormally low value since 1940s. The temporal variations in the dust deposition are consistent with the changes in the Siberian High (SH) and mean atmospheric temperature of the northern hemisphere during the past 2000 years, with low/high annual temperature anomalies corresponding to high/low dust supplies in the Aral Sea sediments, respectively. The variations in the fine size fraction also show a broadly similarity to a lacustrine δ18O record in Turkey (Jones et al., 2006), implying that there was less moisture entering western central Asia from the Mediterranean during the LIA than during the MWP.  相似文献   

12.
The correlation between the δ^13C and δ^13C-δ^18O in primary carbonates is affected by several factors such as hydrological balance, total CO2 concentrations, climatic condition and lake productivity. The influence of these factors on the δ^13C-δ^18O correlation may be different on different time scales. In this paper, two different-type lakes in southwestern China, Lake Erhai and Lake Chenghai, are selected to investigate the influence of climatic pattern on the δ^13C-δ^18O correlation and to evaluate the reliability of the δ^13C-δ^18O covariance as an indicator of hydrological closure. The results show that there exists good correlation between the δ^13C and δ^18O in Lake Erhai (overflowing open lake) and in Lake Chenghai (closed lake). This suggests that the δ^13C-δ^18O covariance may be not an effective indicator of hydrological closure for lakes, especially on short time scales. On the one hand, a hydrologically open lake may display covariant δ^13C and δ^18O as a result of climatic influence. The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of the δ^13C-δ^18O covariance in Lake Erhai and Lake Chenghai. On the other hand, a hydrologically closed lake unnecessarily displays covariant trends between δ^13C and δ^18O because of the buffering effect of high CO2 concentration on the δ^13C shift in hyper-alkaline lakes. We should be prudent when we use the covariance between δ^13C and δ^18O to judge the hydrological closure of lake.  相似文献   

13.
The present study is undertaken in the Kulsi River valley, a tributary of the Brahmaputra River that drains through the tectonically active Shillong Plateau in northeast India. Based on the fluvial geomorphic parameters and Landsat satellite images, it has been observed that the Kulsi River migrated 0.7–2 km westward in its middle course in the past 30 years. Geomorphic parameters such as longitudinal profile analysis, stream length gradient index (SL), ratio of valley floor width to valley height (Vf), steepness index (\(k_{s})\) indicate that the upstream segment of the Kulsi River is tectonically more active than the downstream segment which is ascribed to the tectonic activities along the Guwahati Fault. \(^{14}\hbox {C}\) ages obtained from the submerged tree trunks of the Chandubi Lake, which is located in the central part of the Kulsi River catchment suggests inundation (high lake levels) during 160 ± 50 AD, 970 ± 50 AD, 1190 ± 80 AD and 1520 ± 30 AD, respectively. These periods broadly coincide with the late Holocene strengthened Indian Summer Monsoon (ISM), Medieval Warm Period (MWP) and the early part of the Little Ice Age (LIA). The debris which clogged the course of the river in the vicinity of the Chandubi Lake is attributed to tectonically induced increase in sediment supply during high magnitude flooding events.  相似文献   

14.
Several lines of evidence concur to explain the climatic fluctuations that occurred in the central region of Argentina during the last millennium. The investigation was advanced in two ways: on the one hand, a geographic model was elaborated; and on the other, a temporal sequence for various climatic situations was developed. During the last 1000 yr, two significant events related to global changes occurred: the Medieval Warm Period (MWP) and the Little Ice Age (LIA). The Medieval Warm Period was characterized by a humid and warm climate in the plains and recession of the Andean glaciers. In contrast, during the Little Ice Age the plains had temperate, semi-arid to arid climates, and Andean glaciers advanced. In the western region, the fluvial-lacustrine systems were more extensive during cold events (LIA) and contracted during warm events (MWP). In contrast, in the eastern region the fluvial-lacustrine systems showed a diminution during cold events and increased their extent during warm episodes. During the LIA, the occurrence of two cold pulses separated by an intermediate period has been established. The first cold pulse extended from the beginning of the XV century to the end of the XVI century; the second cold pulse (the main one) began at the beginning of the XVIII century and lasted until the beginning of the XIX century. Both cold pulses can be related to the Spörer and Maunder Minimums respectively. These climatic changes modified the landforms, influenced the vegetation distribution and were one of the main factors for control of human activities during the last 1000 yr.  相似文献   

15.
Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA).High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300–1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550–1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima.The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record—most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.  相似文献   

16.
Short-term climate changes in Southern Chile are investigated by a multi-proxy analysis of a 53-cm-long sedimentary sequence selected among eight short cores retrieved in Lago Puyehue (Chile, 40°S). This core contains a 600-yr-long undisturbed record of paleo-precipitation changes. Two measurement methods for sediment density, organic matter and biogenic silica contents are compared and the most appropriate techniques are selected. Together with aluminium and titanium concentrations, grain size and geochemical properties of the organic matter, these proxies are used to demonstrate paleo-precipitation changes around 40°S. Increase of terrigenous particle supply between A.D. 1490 and A.D. 1700 suggests a humid period. Contemporaneously, δ13C data show increasing lake productivity, in response to the high nutrient supply. The A.D. 1700-1900 interval is characterized by a decreasing terrigenous supply and increasing δ13C values, interpreted as a drying period. The magnetic susceptibility signal, reflecting the terrigenous/biogenic ratio, demonstrates that similar variations occur in all the undisturbed sedimentary environments of Lago Puyehue. The A.D. 1490-1700 wet period is associated with the onset of the European Little Ice Age (LIA) and interpreted as its local signature. This work supports the fact that the LIA was a global event, not only restricted to the Northern Hemisphere.  相似文献   

17.
过去2 000年气候变化是深入了解过去全球气候演化机制、探索人类活动与环境演化相互关系的重要依据。我国西南地区是气候变化与人类文明研究的重要区域,获取更多记录资料对深入理解两者之间的相互关系尤为重要。本文以云南省腾冲县北海湿地沉积物为研究对象,利用AMS 14C测年建立年代学序列,利用烧失量、粒度分析结果建立了该地区过去2 050年气候演变序列。结果表明:2 050 cal. a B.P.~1 400 cal. a B.P.期间尤其是最后阶段气候寒冷干旱;1 400 cal. a B.P.~750 cal. a B.P.期间相对温暖湿润;750 cal. a B.P.~300 cal. a B.P.期间寒冷干旱;300 cal. a B.P.以来温暖偏湿。通过与云南地区人类活动记录对比发现,该地区人口的增长、社会政权的更替在一定程度上受自然气候环境演化的影响,南诏和大理民族政权的建立主要集中在相对温暖湿润的中世纪暖期;此外,云南地区近2 000年来人口数量的变化与气候变化同样呈现出较好的一致性。  相似文献   

18.
Core A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula.  相似文献   

19.
中世纪暖期前后我国雷洲半岛地区的古气候变化   总被引:1,自引:0,他引:1  
本文对位于雷洲半岛湖光岩玛珥湖湖沉积物进行了年代学(137Cs、AMS 14C)及总碳(TC)、氮(TN)、无机碳(IC)的分析。对于湖光岩玛珥湖这一热带地区封闭湖泊而言,无机碳含量的变化可能受降水量-蒸发量控制。有机碳、氮的变化可能反映了湖泊生产率及营养状况的变化。在热带地区,湖水温度变化不大,温度可能不是藻类生长的主要控制因素,降水量的增加及湖泊营养物质的变化可能是有机碳、氮含量增加的主要原因。碳酸盐含量的高值期对应于有机碳、氮的低值阶段。1400a来碳酸盐含量有两个高值阶段,分别为AD 880~1260和AD 670~760.这两个高值阶段可能也是干旱期。湖光岩玛珥湖地球化学指标所揭示的干旱期与安徽龙感湖硅藻和孢粉的研究结果有较好的对应性,可能表明我国南部地区中世纪暖期可能存在一个干旱期。   相似文献   

20.
对敦化北部山地205 cm深泥炭剖面中的植硅体进行提取、鉴定和分析,结合AMS14C测年,重建研究区近2 ka的古气候环境过程,探讨其变化规律及影响因素。植硅体组合、有序聚类和植硅体指数变化趋势显示,研究区泥炭沼泽经历了4个显著阶段:即45-680 A.D.暖湿阶段;680-1340 A.D.温暖偏干阶段;1340-1870 A.D.由干转湿的寒冷阶段;1870-2017 A.D.转暖、干湿波动阶段。其中,680-1225 A.D.对应中世纪暖期(MWP),1340-1870 A.D.对应小冰期(LIA)。在此气候变化背景下,泥炭沼泽发展经历了由缓慢逐渐加快的过程。对比太阳辐射和太阳活动的变化、石笋δ18O序列、重建的东北地区古温度以及Niño3.4重建曲线,泥炭剖面的植硅体分析显示MWP和LIA期间的古气候过程受到太阳活动、太阳辐射、季风环流和ENSO(El Niño-Southern Oscillation)的控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号