首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The north-west Turkish blueschists represent a subducted passive continental margin sequence dominated by metaclastic rocks and marble. The depositional age of the blueschist protoliths are probably Palaeozoic to Mesozoic, while the age of the high-pressure/low-temperature metamorphism is Late Cretaceous. Blueschists are tectonically overlain by a volcanosedimentary sequence made up of accreted oceanic crustal material that locally shows incipient blueschist metamorphism and by spinel peridotite slices. The metaclastic rocks with regional jadeite and glaucophane, which comprise the lower part of the blueschist unit, make up an over 1000-m-thick coherent sequence in the Kocasu region of north-west Turkey. Rare metabasic horizons in the upper parts of the metaclastic sequence with sodic amphibole + Iawsonite but no garnet indicate lawsonite blueschist facies metamorphism. The blueschist metaclastics in the Kocasu region are practically free of calcium and ferric iron and closely approximate the NFMASH system in bulk composition. Two low-variance mineral assemblages (with quartz and phengite) are jadeite + glaucophane + chlorite + paragonite and chloritoid + glaucophane + paragonite. The metaclastics comprise up to several-metres-thick layers of jadeite schist with quartz, phengite and nearly 100 mol% jadeite. Phase relations in the metaclastics show that the chloritoid + glaucophane assemblage, even in Fe2+-rich compositions, is stable in the jadeite stability field. In the NFASH system the above assemblage without the accompanying garnet has a narrow thermal stability field. Mineral equilibria in the metaclastics involving chloritoid, glaucophane, jadeite, paragonite and chlorite indicate metamorphic P-T conditions of 20 ± 2 kbar and 430 ± 30 d? C, yielding geothermal gradients close to 5d? C km-1, one of the lowest geotherms recorded. Blueschists in the Kocasu region, which have been buried to 70 km depth, are tectonically overlain by the volcanosedimentary sequence and by peridotite buried not deeper than 30 km. Phengites from two jadeite schists were dated by Ar/Ar laser probe; they give an age of 88.5 ± 0.5 Ma, interpreted as the age of metamorphism. Blueschists and the overlying peridotite bodies are intruded by 48-53-Ma-old granodiorite bodies that were emplaced at 10 km depth. This suggests that the exhumation of blueschists by underplating of cold continental crust, and normal faulting at the blueschist-peridotite, interface occurred during the Late Cretaceous to Palaeocene (88-53 Ma).  相似文献   

2.
Abstract Blueschists occurring as layers in calcite marbles of the Meliata unit occur along the so-called Roznava tectonic line situated in the southern part of the Gemericum, Slovakia. Mineral assemblages and compositions from seven blueschists localities and one occurrence of amphibolite facies rocks overprinted by blueschist metamorphism were investigated. The most common minerals in the blueschists are blue amphibole, epidote and albite. Some Fe2+- and Al-rich rocks also contain garnet and chloritoid, respectively. Na-pyroxene with a maximum 50% jadeite component was also found. The blue amphiboles correspond mostly to crossite and also to glaucophane and ferroglaucophane in some samples. Almandine- and spessartine-rich garnet has very low MgO content (<3 wt%). The Si content in phengite ranges between 3.3 and 3.5 pfu calculated on the basis of 11 oxygens. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during a prograde stage of metamorphism. The P-T conditions of metamorphism are estimated to be about 380–460° C and 10–13 kbar. Pressures of 7.5–8.5 kbar and temperatures of 350–370° C were obtained for some actinolite- and aegirine-rich rocks. Apart from chlorite, other mafic minerals formed during retrograde metamorphism are biotite and occasionally also actinolite.  相似文献   

3.
The northern part of the Cycladic island of Sifnos (Greece)is formed by a coherent sequence of interlayered acid and basicmetavolcanic rocks and metasediments, which underwent a high-pressureblueschist facies metamorphism during the Eocene. The metabasicrocks, including eclogites, blueschists, and actinolite-bearingrocks, are discussed in terms of their mineral assemblages,and bulk-rock and mineral chemistries. Metamorphic conditionsof 470 ? 30 ?C and 15 ? 3 kb are indicated by garnet-omphacitegeothermometry and by the development of deerite in meta-ironstonesand jadeite +quartz in meta-acidites.Mineral textures and systematicelement distributions between coexisting minerals suggest attainmentof chemical equilibrium. A new projection from garnet, epidote,quartz and vapour onto the NaAlO2-Al2O3-CaMgO2 plane is usedto illustrate equilibrium phase relations between omphacite,glaucophane, actinolite, paragonite, and chloritoid. It is demonstratedthat eclogites, blueschists, and actinolite-bearing metabasitesrepresent different bulk-rock compositions that recrystallizedunder the same fluid pressure and temperature conditions. Eclogitescontaining hydrous minerals such as glaucophane, actinolite,phengite, or paragonite in equilibrium with garnet and omphacitecan occur together with blueschists in high-pressure terraneswithout indicating different metamorphic conditions.  相似文献   

4.
Sodic metapelites with jadeite, chloritoid, glaucophane and lawsonite form a coherent regional metamorphic sequence, several tens of square kilometres in size, and over a kilometre thick, in the Orhaneli region of northwest Turkey. The low‐variance mineral assemblage in the sodic metapelites is quartz + phengite + jadeite + glaucophane + chloritoid + lawsonite. The associated metabasites are characterized by sodic amphibole + lawsonite ± garnet paragenesis. The stable coexistence of jadeite + chloritoid + glaucophane + lawsonite, not reported before, indicates metamorphic pressures of 24 ± 3 kbar and temperatures of 430 ± 30 °C for the peak blueschist facies conditions. These P–T conditions correspond to a geotherm of 5 °C km?1, one of the lowest recorded in continental crustal rocks. The low geotherm, and the known rate of convergence during the Cretaceous subduction suggest low shear stresses at the top of the downgoing continental slab.  相似文献   

5.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

6.
The prograde amphibole that coexists with chlorite, epidote, muscovite, albite, quartz and hematite in Sanbagawa schists was examined to investigate the relationship between the prograde P-T paths of individual rocks and the metamorphic field gradient in the Sanbagawa metamorphic belt, central Shikoku. The amphibole changes from actinolite, through ferri-winchite and crossite, to barroisite and hornblende with increasing grade along the metamorphic field gradient. However, the sequence of prograde amphibole compositions in each sample varies in different mineral zones. The general scheme can be summarized as: magnesioriebeckite-riebeckite crossite in the upper chlorite zone of lower-grade rocks; crossite or glaucophane barroisite in the garnet zone of medium-grade rocks; and actinolite or winchite barroisite hornblende in the albite-biotite zone of higher-grade rocks. Changes of amphibole composition indicate that the prograde P-T path recorded in the higher-grade rocks was situated on the higher-temperature side of that of the lower-grade rocks and on the lower-pressure side of the metamorphic field gradient. The systematic change of P-T paths implies an increasing d P /d T during continuous subduction. These features can be interpreted as documenting prograde metamorphism within a young subduction zone that has a non-steady-state geotherm.  相似文献   

7.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

8.
Zaw Win Ko  M. Enami  M. Aoya   《Lithos》2005,81(1-4):79-100
The Sanbagawa metamorphic rocks in the Besshi district, central Shikoku, are grouped into eclogite and noneclogite units. Chloritoid and barroisite-bearing pelitic schists occur as interlayers within basic schist in an eclogite unit of the Seba area in the Sanbagawa metamorphic belt, central Shikoku, Japan. Major matrix phases of the schists are garnet, chlorite, barroisite, paragonite, phengite, and quartz. Eclogite facies phases including chloritoid and talc are preserved only as inclusions in garnet. PT conditions for the eclogite facies stage estimated using equilibria among chloritoid, barroisite, chlorite, interlayered chlorite–talc, paragonite, and garnet are 1.8 GPa/520–550 °C. Zonal structures of garnet and matrix amphibole show discontinuous growth of minerals between their core and mantle parts, implying the following metamorphic stages: prograde eclogite facies stage→hydration reaction stage→prograde epidote–amphibolite stage. This metamorphic history suggests that the Seba eclogite lithologies were (1) juxtaposed with subducting noneclogite lithologies during exhumation and then (2) progressively recrystallized under the epidote–amphibolite facies together with the surrounding noneclogite lithologies.

The pelitic schists in the Seba eclogite unit contain paragonite of two generations: prograde phase of the eclogite facies included in garnet and matrix phase produced by local reequilibration of sodic pyroxene-bearing eclogite facies assemblages during exhumation. Paragonite is absent in the common Sanbagawa basic and pelitic schists, and is, however, reported from restricted schists from several localities near the proposed eclogite unit in the Besshi district. These paragonite-bearing schists could be lower-pressure equivalents of the former eclogite facies rocks and are also members of the eclogite unit. This idea implies that the eclogite unit is more widely distributed in the Besshi district than previously thought.  相似文献   


9.
This paper presents new petrologic data for high-pressure, low-temperature (HP–LT) metamorphic rocks at Juisui. We reinterpret the so-called “Tamayen block” (Yang and Wang, 1985) or “Juisui block” (Liou, 1981, Beyssac et al., 2008) as a tectonic mélange. It is not a coherent sheet but rather a mixture dominated by greenschist and pelitic schist with pods of serpentinite, epidote amphibolite, and rare blueschist. Four types of glaucophane-bearing rocks are newly recognized in this mélange. Type I is in contact with greenschist lacking glaucophane and garnet. Glaucophane is present only as rare inclusions within pargasite. This type records metamorphic evolution from epidote blueschists-, epidote amphibolite-, to greenschist-facies. Type II contains characteristic zoned amphiboles from barroisite core to Mg-katophorite mantle and glaucophane rim, implying an epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Type III includes winchite and indicates PT conditions of about 6–8 kbar, approaching 400 °C. Type IV contains paragonite but lacks garnet; amphibole shows a Na–Ca core surrounded by a glaucophane rim. This type shows a high-pressure (?) epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Amphibole zoning trends and mineral assemblages imply contradictory PT paths for the four types of glaucophane-bearing rocks—consistent with the nature of a tectonic mélange. The new PT constraints and petrologic findings differ from previous studies (Liou et al., 1975, Beyssac et al., 2008).  相似文献   

10.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

11.
The paper presents authors’ data on mineral assemblages in rocks of olistostrome melange in the northern part of the Vardar zone in the Fruška Gora Range, Serbia, Balkan Peninsula, which were affected by metamorphism to low grade of the glaucophane-schist facies in relation to Late Jurassic-Early Cretaceous subduction. The olistostrome is dominated by phengite-chlorite-quartz metasandstones and glaucophane-bearing metabasalts, with the latter rocks containing an equilibrium association of zonal riebeckite-glaucophane amphibole, chlorite, pumpellyite, actinolite, and epidote. The Na-amphibole is commonly zonal and has riebeckite cores and glaucophane outermost zones. The metasandstones contain phengite rich in Si (3.45 f.u.) and Mg (0.40 f.u.), which can be formed only under high pressures. The composition of the phengite and the position of glaucophane-pumpellyite-bearing mineral assemblages from the Fruška Gora Range in the P-T grid for low-temperature metabasites indicate that the culmination of subduction-related metamorphism occurred at T − 340–350°C, P = 4−8 kbar, which corresponded to a depth of 14–29 km. Comparison with certain typical glaucophane-bearing complexes shows that the Rbk → Gln zoning of the Na-amphiboles develops in the course of prograde metamorphism. The zoning of Na and Na-Ca amphiboles of the riebeckite-glaucophane-winchite-barroisite series is proved to be, along with zonal garnet crystals, a sensitive indicator of prograde high-pressure transformations in metabasites in the low-temperature region and can be utilized to distinguish between metamorphic zones and subfacies in glaucophane schist complexes.  相似文献   

12.
The Chinese western Tianshan high-pressure/low-temperature (HP–LT) metamorphic belt, which extends for about 200 km along the South Central Tianshan suture zone, is composed of mainly metabasic blueschists, eclogites and greenschist facies rocks. The metabasic blueschists occur as small discrete blocks, lenses, bands, laminae or thick beds in meta-sedimentary greenschist facies country rocks. Eclogites are intercalated within blueschist layers as lenses, laminae, thick beds or large massive blocks (up to 2 km2 in plan view). Metabasic blueschists consist of mainly garnet, sodic amphibole, phengite, paragonite, clinozoisite, epidote, chlorite, albite, accessory titanite and ilmenite. Eclogites are predominantly composed of garnet, omphacite, sodic–calcic amphibole, clinozoisite, phengite, paragonite, quartz with accessory minerals such as rutile, titanite, ilmenite, calcite and apatite. Garnet in eclogite has a composition of 53–79 mol% almandine, 8.5–30 mol% grossular, 5–24 mol% pyrope and 0.6–13 mol% spessartine. Garnet in blueschists shows similar composition. Sodic amphiboles include glaucophane, ferro-glaucophane and crossite, whereas the sodic–calcic amphiboles mainly comprise barroisite and winchite. The jadeite content of omphacite varies from 35–54 mol%. Peak eclogite facies temperatures are estimated as 480–580 °C for a pressure range of 14–21 kbar. The conditions of pre-peak, epidote–blueschist facies metamorphism are estimated to be 350–450 °C and 8–12 kbar. All rock types have experienced a clockwise PT path through pre-peak lawsonite/epidote-blueschist to eclogite facies conditions. The retrograde part of the PT path is represented by the transition of epidote-blueschist to greenschist facies conditions. The PT path indicates that the high-pressure rocks formed in a B-type subduction zone along the northern margin of the Palaeozoic South Tianshan ocean between the Tarim and Yili-central Tianshan plates.  相似文献   

13.
海阳所堆积辉长岩由橄长岩、橄榄辉长岩和辉长岩组成。在橄长岩和橄榄辉长岩中发育有典型的变质反应结构:主要为橄榄石与斜长石之间形成由斜方辉石、尖晶石、角闪石和石榴石等矿物组成的多期次次变边,并有三个不同世代变质矿物,早期Cpx+Opx+Spl,中期Amp,晚期Grt;期次是钛铁矿与斜长石之间形成石榴石次变边,相对比较简单,只有一个世代变质矿物,为Grt+Amp+Rut或Grt+Rut岩中石榴石是通过斜长石与角闪石或斜长石与钛铁矿之间的变质反应形成的,虽为峰值变质作用的产物,但变质反应的期次及类型不同导致了所形成石榴石的温度和压力有所不同。堆积辉长岩形成演化的温压计算表明,堆积辉长岩在经过近等压降温的岩浆作用之后的变质作用早期,仍为近等压降温,而晚期则表现为近等温升压。这一特殊的P-T演化可能反映了堆积辉长冷侵位与深俯冲特征。  相似文献   

14.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

15.
ABSTRACT Paragonite-bearing amphibolites occur interbedded with a garbenschist-micaschist sequence in the Austroalpine Schneeberg Complex, southern Tyrol. The mineral assemblage mainly comprises paragonite + Mg-hornblende/tschermakite + quartz + plagioclase + biotite + ankerite + Ti-phase + garnet ± muscovite. Equilibrium P–T conditions for this assemblage are 550–600°C and 8–10 kbar estimated from garnet–amphibole–plagioclase–ilmenite–rutile and Si contents of phengitic muscovites. In the vicinity of amphibole, paragonite is replaced by symplectitic chlorite + plagioclase + margarite +± biotite assemblages. Muscovite in the vicinity of amphibole reacts to form plagioclase + biotite + margarite symplectites. The reaction of white mica + hornblende is the result of decompression during uplift of the Schneeberg Complex. The breakdown of paragonite + hornblende is a water-consuming reaction and therefore it is controlled by the availability of fluid on the retrogressive P–T path. Paragonite + hornblende is a high-temperature equivalent of the common blueschist-assemblage paragonite + glaucophane in Ca-bearing systems and represents restricted P–T conditions just below omphacite stability in a mafic bulk system. While paragonite + glaucophane breakdown to chlorite + albite marks the blueschist/greenschist transition, the paragonite + hornblende breakdown observed in Schneeberg Complex rocks is indicative of a transition from epidote-amphibolite facies to greenschist facies conditions at a flatter P–T gradient of the metamorphic path compared to subduction-zone environments. Ar/Ar dating of paragonite yields an age of 84.5 ± 1 Ma, corroborating an Eoalpine high-pressure metamorphic event within the Austroalpine unit west of the Tauern Window. Eclogites that occur in the Ötztal Crystalline Basement south of the Schneeberg Complex are thought to be associated with this Eoalpine metamorphic event.  相似文献   

16.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

17.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   

18.
Rocks within the Zermatt-Saas ophiolite of the western Alps have undergone eclogite facies metamorphism during subduction prior to the Alpine collision. The metamorphic history of these rocks is well defined, with eclogitic assemblages being followed by the limited growth of blueschist assemblages of glaucophane and paragonite. Subsequent greenschist alteration occurs adjacent to faults, veins and metasediments. Away from such sources of water, retrogression is very limited. Sm-Nd isotopic analyses of an essentially unretrogressed eclogitic metabasalt suggest that eclogite facies metamorphism occurred at 52 ± 18 Ma. The large uncertainty is due to the presence of very small amounts of Nd-rich epidote present as inclusions within garnet. As the closure temperature of garnet to Sm & Nd is thought to be >600C, resetting due to post-high-pressure diffusion is thought to be insignificant. Given the fine-grained protolith to the sample analysed, and its extensive deformation under eclogite facies conditions, incomplete homogenization of pre-metamorphic isotopic variations is also considered unlikely to be responsible for the young age. A Tertiary age of eclogitization means that models of early Alpine evolution based on the cessation of high-pressure metamorphism in the Cretaceous need to be revised.  相似文献   

19.
High-Mg chloritoid (XMg = 0·40–0·47) andrelatively high-Mg staurolite (XMg = 0·25–0·28)coexisting with kyanite and garnet were identified in a mica–garnet-richrock associated with very high-pressure eclogites in the BugheaComplex of the Leaota Massif (South Carpathians). Major andtrace element geochemical data for both fresh eclogites andassociated rocks which represent a metasomatic or retrogradealteration rind of the eclogites, indicate a pelitic precursor.Magnesian chloritoid was found as inclusions in garnet as partof a chloritoid–kyanite–garnet assemblage whichis indicative of high-pressure conditions. The host garnet showsa typically prograde chemical zoning pattern. The chloritoid-bearingassemblage is confined to the inner part of the garnet porphyroblasts,whereas the matrix assemblage in equilibrium with Mg-rich garnetrims has exceeded the thermal stability limit of chloritoid.Pressure–temperature pseudosections for simplified compositionsapproaching the rock bulk-chemistry show a high-pressure fieldfor the identified chloritoid-bearing assemblage in good agreementwith pressure–temperature estimates in the CFMASH andKCFMASH chemical subsystems using analysed mineral compositions.The derived pressure–temperature path is clockwise, indicatingoverprinting during exhumation from 1·8 GPa and 580°Cto 1·15 GPa and 620°C, at a water activity approachingaH2O = 1. These conditions were attained in a subduction mélangeindicating transient thermal perturbations of a subduction channel. KEY WORDS: high-pressure metapelite; Mg-rich chloritoid; PT path; PT pseudosection; very high-pressure eclogite  相似文献   

20.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号