首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnet lherzolite xenoliths of similar petrography and mineralogy are found in the Elwin Bay, Nanorluk, and Amayersuk kimberlites. The xenoliths are either coarse equant to coarse tabular or porphyroclastic in texture. Compositions of coexisting pyroxenes indicates equilibration at 1000–1270° C at 34–41 kb (Wood-Banno/Wood method) or 865–1200° C at 29–36 kb (Wells/Wood method). No simple correlation exists between textural types and equilibration temperature. A primary spinel-bearing garnet lherzolite has equilibrated at 840° C at 21 kb (Wells/Wood) and provides the only known example of a xenolith with relatively high Cr/Cr+Al which has equilibrated at the spinel to garnet lherzolite transition along the continental geotherm. The pressure and temperature estimates for the xenoliths lie above those of the steady state geotherm and indicate that a perturbed geotherm existed in this region at the time of kimberlite intrusion. The formation of perturbed geotherms is discussed and it is considered that the upper high temperature limbs of inflected geotherms are transient pseudogeotherms generated in response to a thermal aureole about a rising mantle diapir and that the lherzolites which define such a geotherm represent a telescoped section of the mantle and include xenoliths derived from above and below the point of kimberlite liquid segregation. The lower temperature limbs of inflected geotherms are considered to be representative of the steady state geotherm and are sampled by the kimberlite which after segregation from the diapir rises at a much faster rate than the parent diapir and passes through material which is unaffected by the diapir thermal aureole.  相似文献   

2.
Granulitic and eclogitic inclusions from basic pipes at Delegate,Australia   总被引:4,自引:0,他引:4  
Basic breccia-nephelinite pipes at Delegate (N.S.W., Australia) contain abundant two-pyroxene granulite, garnet granulite and fassaite eclogite inclusions and rare spinel pyroxenite, peridotite and charnockite inclusions.Petrographic, mineralogical and chemical data on the inclusions and their co-existing phases are consistent with the hypothesis that the fassaite eclogite, garnet granulite and spinel pyroxenite inclusions all crystallized or recrystallized in about the same temperature-pressure region, within the range 7–15 kb and 700–1200° C. This means that these particular inclusions were formed within the uppermost part of the mantle and/or the lowermost part of the crust.The two-pyroxene granulites may also have crystallized in the same region but there are some data which are indicative of crystallization at lower pressures within the crust. The charnockite inclusion is also considered to be of crustal origin.  相似文献   

3.
The alpine type peridotite of Ronda (Spain) essentially is spinel lherzolite plus minor (< 5 vol.-%) amounts of basic layers. Basic layers are thin bands of several cm in thickness with different extent, arranged parallel to the lineation a of the lherzolite. 5 new rock analyses are presented, showing that the basic layers are olivine tholeiitic in composition, supporting their genetic interpretation as partial fusion products from an upper mantle peridotite of nearly pyrolitic chemism. Basic parts are not removed from the lherzolite host but consolidated as garnet pyroxenites, spinel pyroxenites, and olivine gabbros. Microprobe analyses of 6 olivines, 6 orthopyroxenes, 5 clinopyroxenes, 1 garnet, 2 spinels are given, most of them from coexisting minerals of pyroxenites and olivine gabbros.In garnet pyroxenite and in spinel pyroxenite the two pyroxenes are Al-rich pyroxenes, changing continuously by subsolidus reactions to Al-poor pyroxenes+anorthite ± spinel in the gabbro. Subsolidus transformations are marked by exsolution reactions and recrystallizations, favoured by weak deformation. Detailed study of mineral textures combined with chemical data show that spinel pyroxenite was isochemically transformed to spinel bearing olivine gabbro. This transformation mainly was caused by change in the P-T-conditions, related to the further steady uplift of the entire massif. P-T-estimations according to several methods indicate consolidation of garnet pyroxenite bands at 1100 ° C/20 kb. Subsolidus reactions changing spinel pyroxenite (1000-900 ° C/15 kb) to olivine gabbro layers show final re-equilibration in the range of 900–800 ° C at 15–10 kb.

Gekürzter, spezieller Teil einer vom Naturwiss. FB III der Universität Würzburg 1975 angenommenen Habilitationsschrift

Die Mikrosondenuntersuchungen wurden an einer CAMECA MS 46 (Leihgabe der Deutschen Forschungsgemeinschaft im Mineralogischen Institut Würzburg) durchgeführt. Für die Bewilligung beantragter Sachmittel und Reisekostenzuschüsse bin ich der DFG zu Dank verpflichtet. Dank schulde ich den Herren Prof. Dr. A. San Miguel, Mineralogisches Institut der Universität Barcelona, sowie Prof. Dr. S. Matthes, Dr. E. Knauer, Dr. P. Richter, Mineralogisches Institut Würzburg für Hilfe und Kritik. Der Comisión Nacional de Geologia, Madrid, danke ich für die offizielle Erlaubnis zu den Geländearbeiten.  相似文献   

4.
Mineral associations and compositions of carbonates within pyrope crystals are clues to the genesis of mantle carbonate and to the character of metasomatic melts in depleted peridotite. The pyrope crystals are in ultramafic diatremes of the Navajo field on the Colorado Plateau. Although inclusions of olivine and pyroxene are typically monomineralic, 4 of 6 inclusions of carbonates and hydrates are polymineralic. Polymineralic assemblages include: pargasite-magnesite-dolomite-apatite-spinel; pargasite-dolomite-Ba phlogopite (with 10% BaO); olivine-dolomite-spinel; edenite-chlorite; and olivine-ilmenite-spinel. Magnesite and chlorite are present also as monomineralic inclusions. The two inclusions with pargasite plus carbonate are in the same garnet; the association of carbonates plus hydrates and the enrichment in Ba are evidence that the included minerals originated from melt trapped in pyrope. The pargasite and mica are F-poor and contain about 0.4 and 1.1 wt% Cl, respectively, more than any other analyzed mantle amphibole or mica. If the parent melts of such inclusions are similar to those responsible for trace-element metasomatism of continental lithosphere, then these melts have higher Cl/F ratios than those inferred from typical xenolith minerals. Amphibole-garnet and olivine-spinel equilibration temperatures are in the range 500–700° C, so the garnets cooled to low temperatures within the mantle following inclusion of melt. All the hydrates and carbonates may have formed from trapped melt, but evidence is strong only for the complex pargasite-carbonate-mica inclusions. Two garnets containing chlorite are more Cr-rich and Fe-poor than most other inclusion-bearing pyropes, and the chlorite may have been included during prograde metamorphism of subducted lithosphere.  相似文献   

5.
Ultramafic xenoliths of garnet lherzolite (?rare spinel), spinellherzolites, spinel harzburgites, clinopyroxenites, and clinopyroxenemegacrysts were collected from Cenozoic basalts in all partsof eastern China. From their modal composition and mineral chemistryall the xenoliths may be placed into three types representing:a fertile or more primitive mantle (garnet lherzolite and spinellherzolite), a refractory or more depleted mantle (spinel harzburgiteand dunite), and inclusions cognate with the host alkali basaltsat mantle pressures (pyroxenite and megacrysts). There are systematicdifferences between the mineral compositions of each type. Spinelshows a wide compositional range and the spinel cr-number [100Cr/(Cr + Al)] is a significant indicator of the xenolithtype. Spinel cr-number and Al2O3 of coexisting minerals (spinel,clinopyroxene, and orthopyroxene) are useful as refractory indicatorsfor spinel peridotite in that the cr-number increases and thepercentage of Al2O3 decreases with increasing degrees of melting.In garnet peridotite, however, the same functions vary withpressure, not degree of melting. According to P–T estimates,the various xenoliths were derived from a large range of depthsin the upper mantle: spinel peridotite from approximately 11to 22 kb (37–66 km), spinel/garnet lherzolite from 19to 24 kb (62–80 km), and garnet lherzolite from 24 to25 kb (79–83 km). We conclude that the uppermost mantlebeneath eastern China is heterogeneous, with a north-northeastzone of more depleted mantle lying beneath the continental marginand a more primitive mantle occurring towards the continentalinterior.  相似文献   

6.
Three major types of xenoliths, namely, dunite, spinel lherzolite, and pyroxenite suites, occur. The spinel lherzolite suite [ol: Fo86–92] is more refractory than the pyroxenite suite [Fo71–85], and is composed of olivine, orthopyroxene, Cr-diopside, and spinel. Spinel lherzolites represent metasomatically modified mantle residues that constitute the lithosphere underneath Oahu. Metasomatism has induced significant heterogeneity in terms of [Na]cpx in the spinel lherzolitic lithosphere: compared to other vents, Salt Lake xenoliths are anomalously high in [Na]cpx. The fluids responsible for such a process may have been released after crystallization of the hydrous phases in pyroxenite suite veins intrusive into the spinel lherzolites.The pyroxenite suite rocks range from clinopyroxenites, wehrlites, websterites, to lherzolites and a rare dunite. Garnet generally occurs as a secondary phase forming reaction rims around spinel or exsolved blebs in clinopyroxene. Phlogopite and amphibole are common. The garnet-bearing pyroxenite suite rocks last equilibrated in the mantle at 1000°–1150° C and 16–25 kb (50–75 kms depth). Similar temperature range is recorded by the spinel lherzolite suite and rare plagioclase lherzolites. This P-T path is significantly hotter than a calculated conductive geotherm indicating that the lithosphere was substantially warmed up by passing Hawaiian magmas.Contribution No. 585, Geosciences Program, University of Texas at Dallas  相似文献   

7.
Some garnet peridotite nodules from The Thumb, a minette neck on the Colorado Plateau in the southwestern United States, contain zoned minerals. Zoning does not exceed 1.5 wt.% for any oxide, but some relative changes are large: in one garnet TiO2 and Cr2O3 ranges are 0.05–0.65 and 3.5–5.0 wt.%, respectively. In two porphyroclastic nodules, garnet rims are depleted in Mg and enriched in Fe, Ti, and Na compared to cores, and one garnet is irregularly zoned in Ti and Cr. Olivine crystals in these rocks are unzoned, and pyroxene zoning is slight, yet matrix olivine and pyroxene contain more Fe and Ti and less Mg and Cr than inclusions of these phases in garnet. In three coarse nodules, garnet rims are Ti-rich compared to cores, and Ca, Fe, Mg, and Cr zoning patterns are complex. Several nodules appear to have partially equilibrated near 1200° C and 35 kb, and under these conditions cation mobility in pyroxene was greater than in garnet. The zoning partly reflects Fe and Ti metasomatism in the mantle. Calculations indicate that Fe-Mg gradients in garnet could have persisted for only a short time in the mantle, perhaps thousands of years or less, so the metasomatism occurred shortly before eruption. The minette host, a likely source of the Fe and Ti, is rich in light rare earth elements: since the nodules are much poorer in these elements, little or no infiltrated minette was trapped in them. Diffusion is a possible mechanism for nodule metasomatism. Some fertile peridotite nodules from kimberlites may have been affected by similar events. Compositional differences between inclusions in garnet and matrix phases are intriguingly similar to some of the differences between most peridotite inclusions in diamonds and common lherzolite phases.  相似文献   

8.
Mantle xenoliths from Hainan and Qilin, South China have been studied to constrain the nature of the upper mantle and mantle processes beneath a continental margin. The extremely low Ti (160–245 ppm) contents in clinopyroxenes from some spinel lherzolites, indicative of high degrees of partial melting are inconsistent with the relatively high clinopyroxene modes (7.4–13%) in these samples. This inconsistency could be due to polybaric melting that started in the garnet stability field, then, after the breakdown of garnet to pyroxene and spinel, continued in the spinel stability field. Polybaric melting, due to adiabatic decompression of upwelling mantle, would leave a residual mantle in which the degree of depletion decreases with depth. The predicted stratified lithospheric mantle is evidenced by the negative correlation between the forsterite content in olivine and the equilibration temperature, proportional to the depth in the lithosphere from which the xenolith was derived. The lower part of the lithospheric mantle beneath South China consists predominantly of fertile and moderately depleted peridotites, which are either devoid of LREE enrichment, or show the trace element signature of incipient metasomatism, and plot within the Phanerozoic mantle domain. In contrast, the upper part of the mantle contains harzburgite and cpx-poor lherzolite, which are strongly affected by metasomatism of melt/fluid of highly variable composition. The anomalously high orthopyroxene mode (up to 47%) makes some of these refractory samples compositionally similar to the Proterozoic/Archean mantle. Their low equilibrium temperature (800–900 °C) points to the presence of old lithospheric relicts in the uppermost mantle beneath South China. Such lithosphere architecture may have resulted from partial replacement of Archean–Proterozoic lithosphere by asthenosphere that rose adiabatically subsequent to lithospheric thinning during the Cenozoic.  相似文献   

9.
The water-undersaturated melting relationships of a mafic, peralkaline, potassic madupite (with about 3% H2O as shown by chemical analysis) from the Leucite Hills, Wyoming, have been studied at pressures up to 30 kb. At low pressures (<5 kb) leucite is the dominant liquidus phase, but it is replaced at higher pressures by clinopyroxene plus olivine (<5–7 kb), clinopyroxene (7–12.5 kb), clinopyroxene plus minor spinel (12.5–17.5 kb), and clinopyroxene alone (17.5–> 30 kb). At all pressures there is a reaction relationship with falling temperature between melt, olivine and probably clinopyroxene to yield phlogopite. Apatite is stable within the melting interval to pressures above 25 kb. Electron microprobe analyses demonstrate that the clinopyroxene is diopsidic, with low aluminium and titanium contents. Pressure has relatively little effect on the composition of the pyroxene. Phlogopite is also aluminium-poor and has only a moderate titanium content. The experimental results indicate that madupite is not the partial melting product of hydrous lherzolite or garnet lherzolite in the upper mantle and it seems improbable that it is derived by melting of mantle peridotite with a mixed H2O-CO2 volatile component. Madupite could, however, be the partial melting product of mica-pyroxenite or mica-olivine-pyroxenite in the upper mantle. It is pointed out that the chemistry of some potassium-rich volcanics may have been affected by volatile transfer and other such processes during eruption and that experimental studies of material affected in this way have little bearing upon the genesis of potassic magmas. Finally, the experimental results enable constraints to be placed upon the P-T conditions of the formation of richterite-bearing mica nodules found in kimberlites and associated rocks. Maximum conditions are 25 kb and 1,100 ° C.  相似文献   

10.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

11.
The Horoman peridotite complex, Hokkaido, Japan is divided into Lower and Upper zones on the basis of contrasting geological features. The complex recorded a consecutive decompression history in chemical zoning of pyroxenes and plagioclase in plagioclase lherzolite, which is interpreted to have been derived from garnet lherzolite by subsolidus decompression reactions. In the Lower Zone, and earlier decompression history is clearly preserved in large pyroxene porphyroclasts, which show marked M-shaped Al zoning characterized by low Al concentration at the core (Al=0.12/6 oxygens), gradual increase toward the marginal region, and rapid decrease toward the rim. The Ca content in the core is nearly constant (Ca=0.03/6 oxygens) with slight increase toward the margin followed by abrupt decrease toward the rim. The Al and Ca contents in the core of orthopyroxene in plagioclase lherzolite from the Upper Zone (Al=0.22, Ca=0.055/6 oxygens) are much higher than those for the Lower Zone, and the Al content typically decreases monotonously from the core to the rim with several exceptions that show poorly developed M-shaped zoning profiles. The earliest P-T conditions, inferable from the core compositions of pyroxenes are 900–950°C and 20 kbar for the Lower Zone and 1100–1150°C and 20 kbar for the Upper Zone. The increase of Al from the core to the margin is inferred to have resulted from nearly adiabatic decompression from these conditions into spinel peridotite facies. The complex experienced further decompression from the spinel stability field into the plagioclase stability field, which is inferred from plagioclase zoning in fine-grained aggregates composed mostly of plagioclase, chromite spinel, and olivine with minor pyroxenes. The Na-Ca ratio of each plagioclase grain decreases from the core to the rim, suggesting continuous decompression reaction producing olivine and plagioclase from pyroxenes and spinel. The sharp increase in Ca content toward the rim indicates that fairly rapid cooling associated with decompression is necessary to form and preserve the marked zoning. The sharp decrease in Al and Ca contents toward the rim of orthopyroxene was also formed during this final ascent of the complex. The systematic changes of the mineralogic and petrographic features that are gradational between the Lower and Upper zones suggest that the Horoman complex retains a temperature variation from the upper mantle. The Upper Zone is interpreted to have followed a higher temperature decompression path than the Lower Zone and probably represents a relatively hotter portion of a mantle diapir ascending from a depth greater than 60 km in the upper mantle.  相似文献   

12.
Peridotite xenoliths from the Bereya alkali picrite tuff in the Vitim volcanic province of Transbaikalia consist of garnet lherzolite, garnet–spinel lherzolite and spinel lherzolite varieties. The volcanism is related to the Cenozoic Baikal Rift. All peridotites come from pressures of 20–23 kbar close to the garnet to spinel peridotite transition depth, and the presence of garnet can be attributed to cooling of spinel peridotites, probably during formation of the lithosphere. The peridotites show petrographic and mineral chemical evidence for infiltration by an alkaline silicate melt shortly before their transport to the Earth's surface. The melt infiltration event is indicated petrographically by clinopyroxenes which mimic melt morphologies, and post-dates outer kelyphitic rims on garnets which are attributed to an isochemical heating event within the mantle before transport to the Earth's surface. Single-mineral thermometry gives reasonable temperature estimates of 1050±50°C, whereas two-mineral methods involving clinopyroxene are falsified by secondary components in clinopyroxene introduced during the melt infiltration event. Excimer Laser–ICP-MS analysis has been performed for an extensive palette of both incompatible and compatible trace elements, and manifests the most thorough dataset available for this rock type. Orthopyroxene and garnet show only partial equilibration of trace elements with the infiltrating melt, whereas clinopyroxene and amphibole are close to equilibration with the melt and with each other. The incompatible element composition of the infiltrating melt calculated from the clinopyroxene and amphibole analyses via experimental mineral/melt partition coefficients is similar to the host alkali picrite, and probably represents a low melt fraction from a similar source during rift propagation. The chemistry and chronology of the events recorded in the xenoliths delineates the series of events expected during the influence of an expanding rift region in the upper mantle, namely the progressive erosion of the lithosphere and the episodic upward and outward propagation of melts, resulting in the evolution of the Vitim volcanic field.  相似文献   

13.
Current methods of geothermometry and geobarometry applicable to garnet lherzolite are reviewed with reference to recent experimental studies of the equilibration of natural garnet lherzolite and it is concluded that the Wells and Mori-Green formulations of the two pyroxene solvus provide the most reasonable temperature estimates. Pressures are best estimated by using these temperatures with Wood's formulation of the orthopyroxene-garnet geobarometer without chromium corrections. Pipe 200 garnet lherzolites are considered to have equilibrated at 907°–950° C at 30.0–34.5 kb.It is shown that the transport times of xenoliths from the mantle are sufficiently long (0.5–24 h) to allow thermal equilibration with kimberlite but are too short to allow chemical re-equilibration to occur. Xenolith suites therefore retain information regarding the pressure/temperature history of the upper mantle despite being heated to the temperature of the kimberlite magma during transport.The Pipe 200 xenolith suite indicates that the upper mantle beneath Lesotho has been perturbed to temperatures slightly above those defined by steady state geotherms. The Pipe 200 suite is derived from a narrow depth range (90–110 km) and derivation of chromite and garnet lherzolites from similar depths implies that the mantle is heterogeneous over short vertical distances. No simple stratigraphy, in which chromite lherzolites overlie garnet lherzolites is evident. Comparison with other suites of Lesotho garnet lherzolites shows that it is not possible to construct an upper mantle stratigraphy except in the most general terms because of the prevailing lateral and vertical heterogeneity and apparent limited depth range represented by the xenolith suites.  相似文献   

14.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

15.
Mineralogical data for xenoliths occurring as inclusions in the fissure erupted alkali basalts and the basanitic tuffs of Anjouan reveal three xenolith suites: 1) the lherzolites, 2) the dunites and wehrlites, 3) the gabbros and syenites. The dunite-wehrlite suite and the gabbro suite are shown to represent high-level cumulate sequences resulting from ankaramitic fractionation of the hy-normative shield-building lavas and cotecictic fractionation of the alkali basalt lavas respectively, whilst the syenitic xenoliths represent evolved high-level intrusions. Mineralogical and rare earth element (REE) data indicate that the most likely origin for the spinel lherzolite xenoliths is by extraction of a basaltic phase from spinel peridotite, leaving a light REE-poor spinel lherzolite residuum. REE models, constructed using model peridotite assemblages, imply that the hy-normative basalt lavas may be derived by partial melting of spinel peridotite at pressures of <20–25 kb leaving a residual lherzolite, and that the alkali basalt and basanite melts are formed by small degrees of melting of a garnet-peridotite source at pressures of >20–25 kb. The spinel lherzolite source for the hy-normative basalts has been accidentally sampled during explosive eruption of the alkali basalt and basanite magmas.  相似文献   

16.
ULTRAMAFIC XENOLITHS FROM A KAMAFUGITE LAVA IN CENOZOIC VOLCANIC FIELD OF WEST QINLING, CHINA AND ITS GEOLOGICAL IMPLICATION  相似文献   

17.
Potassic latite in the transition zone of the Colorado Plateau near Chino Valley, Arizona, contains abundant eclogite and amphibolite xenoliths and minor websterite and pyroxenite xenoliths. One unit contains peridotite xenoliths; analyzed samples have mg-ratios of 68 and 71, 58 and 63 wt% SiO2, and are enriched in potassium and other large ion lithophile (LIL) elements. Rare earth element (REE) patterns are light REE enriched with La greater than 100 times chondritic abundance. The peridotite xenoliths are partly to totally altered, but contain remnant olivine, orthopyroxene, and clinopyroxene; one harzburgite nodule also contains spinel. Mineral compositions from the xenoliths are relatively refractory and similar to those in other spinel peridotite xenoliths from the Colorado Plateau. Geothermometry on olivine-spinel and two-pyroxene pairs indicates equilibration temperatures of less than 800° C for the peridotite nodules. The relatively low temperatures calculated from mineral equilibria are consistent with temperature estimates for other mantle nodules from under the Colorado Plateau.Peridotite xenoliths, mg-ratios, and Ni contents are evidence that the latite magma was derived from mantle peridotite. The potassic nature of the magma probably accounts for its silica-rich composition. The potassic, silica-rich nature of the latite and its enrichment in LREE and other LIL elements are consistent with a source which was metasomatically enriched in these elements either before or during partial melting. The source could have been either spinel or garnet peridotite.  相似文献   

18.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

19.
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.  相似文献   

20.
The anhydrous melting behaviour of two synthetic peridotite compositions has been studied experimentally at temperatures ranging from near the solidus to about 200° C above the solidus within the pressure range 0–15 kb. The peridotite compositions studied are equivalent to Hawaiian pyrolite and a more depleted spinel lherzolite (Tinaquillo peridotite) and in both cases the experimental studies used peridotite –40% olivine compositions. Equilibrium melting results in progressive elimination of phases with increasing temperature. Four main melting fields are recognized; from the solidus these are: olivine (ol)+orthopyroxene (opx)+clinopyroxene (cpx)+Al-rich phase (plagioclase at low pressure, spinel at moderate pressure, garnet at high pressure)+liquid (L); ol+opx+cpx+Cr-spinel+L; ol+opx+Cr-spinel +L: ol±Cr-spinel+L. Microprobe analyses of the residual phases show progressive changes to more refractory compositions with increasing proportion of coexisting melt i.e. increasing Mg/(Mg+Fe) and Cr/(Cr+Al) ratios, decreasing Al2O3, CaO in pyroxene.The degree of melting, established by modal analysis, increases rapidly immediately above the solidus (up to 10% melting occurs within 25°–30° C of the solidus), and then increases in roughly linear form with increasing temperature.Equilibrium melt compositions have been calculated by mass balance using the compositions and proportions of residual phases to overcome the problems of iron loss and quench modification of the glass. Compositions from the melting of pyrolite within the spinel peridotite field (i.e. 15 kb) range from alkali olivine basalt (<15% melting) through olivine tholeiite (20–30% melting) and picrite to komatiite (40–60% melting). Melting in the plagioclase peridotite field produces magnesian quartz tholeiite and olivine-poor tholeiite and, at higher degrees of melting (30–40%), basaltic or pyroxenitic komatiite. Melts from Tinaquillo lherzolite are more silica saturated than those from pyrolite for similar degrees of partial melting, and range from olivine tholeiite through tholeiitic picrite to komatiite for melting in the spinel peridotite field.The equilibrium melts are compared with inferred primary magma compositions and integrated with previous melting studies on basalts. The data obtained here and complementary basalt melting studies do not support models of formation of oceanic crust in which the parental magmas of common mid-ocean ridge basalts (MORB) are attributed to segregation from source peridotite at shallow depths ( 25 km) to leave residual harzburgite. Liquids segregating from peridotite at these depths are more silica-rich than common MORB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号