首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Distinct assemblages of Recent deep-sea benthonic foraminifera from the southeast Indian Ocean have been shown to be associated with Antarctic Bottom Water (AABW) and Indian Bottom Water (IBW). The AABW assemblage is divided into two groups. One is dominated by Epistominella umbonifera and is associated with AABW having temperatures between ?0.2° and 0.4°C. The second group is dominated by Globocassidulina subglobosa and is associated with AABW having temperatures between 0.6° and 0.8°C. The IBW assemblage is marked by the strong dominance of Uvigerina spp. and Epistominella exigua. The faunal-water-mass relationships have been used to infer the history of bottom-water circulation over the last 500,000 yr in this region using faunal data from four Eltanin cores. One core was taken from the Southeast Indian Ridge in association with IBW, and three were taken from the flank of the ridge associated with AABW flowing within a western boundary contour current in the South Australian Basin. Little faunal variation exists in the core beneath IBW (E48-22), indicating that IBW was present on the Southeast Indian Ridge during the last 300,000 yr. A record of the intensity of AABW circulation during the last 500,000 yr is inferred from the benthonic foraminiferal data in the three cores located within the western boundary contour current. Marked oscillations in the relative proportions of AABW and IBW faunal assemblages are found in one core, E48-03. The faunal variations are inferred to have resulted from variation in intensity of AABW circulation between 500,000 and 195,000 yr B.P. In E48-03, the AABW assemblage was present most of the time between 500,000 and 195,000 yr B.P., with low intensity of AABW circulation occurring primarily during the equivalent of stages 8 and 7 (t = 305,000 to 195,000 yr B.P.). The intensity of AABW circulation varied, with a maximum occurring during the equivalent of stage 11 (t = 420,000 yr B.P.). Two additional cores, E45-27 and E45–74, show relatively constant intensity of AABW circulation from 195,000 yr B.P. to the present. The intensity of AABW circulation at the present appears to be intermediate between a maximum during the equivalent of stage 11 (t = 420,000 yr B.P.) and the minimum during the equivalent of stage 8 (t = 275,000 yr B.P.). AABW production has occurred during both glacial and interglacial episodes. Bottom-water productivity has been suggested to play an important role in glacial/interglacial oscillations during the late Quaternary (Weyl, 1968; Newell, 1974). In this study, the relationship between bottom-water circulation and climatic fluctuations appears to be more complex than had been previously suggested, since a simple relationship between Quaternary bottom-water circulation and paleoclimatic fluctuations is not shown.  相似文献   

2.
Analyses of quartz sand grain shape, sediment influx rates and foraminifera define glacial and non-glacial episodes in a 9.69 m core from Frobisher Bay, Arctic Canada. Five radiocarbon dates on organic matter provide a preliminary core chronology, with a basal date of 11,910 yr BP. Quartz sand grain morphology is measured for samples at seven core levels using: (1) Fourier shape analysis; (2) percentage of grain surface conchoidally fractured. Samples at 2.0 and 7.5 m are most fractured and have Fourier roughness coefficients similar to particles sampled directly from glacier ice. These two samples probably represent glacial events in the core. Major intervals of non-carbonate sand influx occur at 9.0–4.5 m and 3.5–1.5 m, separated by several thousand years of slower sedimentation. Detrital carbonate influx rates are relatively high prior to 4.3 m, then decline rapidly indicating a shift in sediment provenance from limestones flooring Frobisher Bay to rafting from far-travelled icebergs. Bio- and lithostratigraphic analysis allows definition of five core units: (1) an environment similar to today below 8.5 m; (2) glacial conditions from 8.5–6.8 m, associated with ice proximal to the core site; (3) ameliorating conditions from 6.8 to 3.2 m; (4) cooler conditions from 3.2 to 0.5 m, probably related to increased iceberg flux rather than neoglacial advances of nearby ice caps; (5) an environment similar to today from 0.5 m. Sand grains sampled at 7.5 and 2.0 m, whose shapes indicate they are derived from glacier ice, lie within the cooler or glacial units defined from foraminiferal analysis. This indicates that quantitative measurement of particle surface morphology can provide useful environmental information in studies of marine cores.  相似文献   

3.
Planktonic foraminiferal assemblages have been examined in 25 trigger core top samples and 51 piston core top samples collected between latitudes 28° S and 55° S and longitudes 79° E and 120° E from the southern Indian Ocean during cruises of the U.S.N.S. Eltanin. Samples taken from water depths exceeding 4000 m and/or showing evidence of calcium carbonate dissolution were eliminated from further analysis. The final piston core data set consists of 34 samples; the trigger core data set containing 21 samples. A close relationship exists between changes in the planktonic foraminiferal assemblages in the surface sediments and surface water temperatures. Species diversity values were computed for each of the core top assemblages using the Shannon-Wiener Index and the Brillouin Index, each of which takes into consideration the number of species and the proportionment of individuals among the species. The Shannon and Brillouin diversity values for all samples are positively correlated (correlation coefficient (r) = +.999). Regression analysis of latitude versus Shannon diversity values in the trigger core samples clearly shows a decrease in diversity with increasing latitude (r = ?.979). Furthermore, a strong correlation (r = +.977) exists between decreasing species diversity (Shannon) and decreasing average summer-winter temperature of the overlying surface waters. A paleotemperature equation derived from the relationship of diversity in trigger core samples and surface water temperature was used to generate paleotemperature curves for five trigger cores and a 6 m piston core of Late Pleistocene age, located beneath the present position of the Subtropical Convergence. A 7–8° C temperature range is suggested between the interglacial and glacial episodes in this Late Pleistocene sequence, and probably reflects latitudinal shifts of the Subtropical Convergence and Australasian Front during the Late Pleistocene.  相似文献   

4.
通过研究翁通-爪哇海台ODP807A孔顶部岩心微体古生物和有孔虫同位素的变化, 探讨冰期旋回中赤道西太平洋晚第四纪古生产力的变化.多种古生产力替代指标揭示出赤道西太平洋古生产力自深海氧同位素13期以来总体呈升高趋势, 具有冰期高、间冰期低的特征.温跃层替代指标显示该海域温跃层变化不具有简单的冰期-间冰期变化模式, 而是分为2个阶段: 280ka以前温跃层平均深度较浅, 呈现高幅低频波动; 280ka以后温跃层平均深度变深, 呈现低幅高频波动.古生产力和温跃层变化模式的明显差异说明温跃层变化不是赤道西太平洋表层生产力波动的主要原因.807A孔古生产力变化与西北太平洋风尘通量变化基本一致, 所以提出来自亚洲中东部的风尘对于提高赤道西太平洋生物生产力可能具有重要意义.   相似文献   

5.
This paper for the first time reveals high-resolution core records of Zabuye Salt Lake in the interior of the Qinghai-Tibet Plateau. According to 1346 samples taken continuously, relatively accurate 14^C, U-series disequilibrium and ESR ages have been obtained, thus revealing that the lake core ages from 0 to 83.63 m of hole SZK02 are -800 to over 128 ka. In the paper, the lake core sedimentary characteristics (including the lithologies and mineral assemblages) are analyzed in detail and correlated with ostracod assemblages I to XX and sporopollen zones A to I, and on the basis of an integrated analysis of the δ^18O values of authigenic calcium-magnesium carbonate and environmental proxies of minerals, sporopollen and microfossils in the lake core, a correlation has been made of oxygen isotope change between this lake core and the Greenland GISP2 and GRIP and Guliya ice cores, and the climate of Zabuye Salt Lake since 128 ka BP is divided into the last interglacial stage (including substages e, d, c, b and a) of oxygen isotope stage (OIS) 5, early glacial stadial of the last glacial stage of OIS 4, interglacial stadial of the last glacial stage of OIS 3, late glacial stadial of the last glacial stage or Last Glacial Maximum of OIS 2 and postglacial state of OIS 1; in addition, 6 Heinrich (H6-H1) events, Younger Dryas event and 8.2 ka BP cold event have been recognized.  相似文献   

6.
Calcareous nannofossil biostratigraphy of late Quaternary Arctic sediments   总被引:2,自引:0,他引:2  
Calcareous nannofossil assemblages of late Quaternary age have been investigated in short sediment cores from the eastern Arctic Ocean and the Norwegian Sea. The ages estimated in these cores are mainly based on calibration with northern North Atlantic reference material, where the first appearance of Emiliania huxleyi occurs in oxygen isotope stage 8 at 264,000 years B.P., and its sharp increase in relative abundance occurs in oxygen isotope stage 4 at 61,000 years B.P. Minor amounts of reworked Cretaceous and Tertiary specimens are present throughout the cores. Intervals where nannofossils occur in abundance represent warmer interstadial or interglacial conditions, whereas barren intervals represent glacial conditions. Holocene open water conditions are recognized by high frequencies of Coccolithus pelagicus . Sediment accumulation rates show considerable variation and range between 1 and 13 cm/ka.  相似文献   

7.
We have analyzed core MD01-2392, ∼ 360 km east of the Mekong River mouth in the South China Sea (SCS). Over the past 500 ka, planktonic foraminiferal oxygen-isotopic values are consistently lighter than northern SCS and open-ocean records by up to 0.5‰, indicating the influence of run-off from the Mekong River during both glacial and interglacial periods. Carbonate content is higher during interglacials; sedimentation rates were higher during glacials. Increased sedimentation rates since 30 ka imply increased run-off during the last glacial maximum and Holocene Period. Contrary to general experience, in which it is classed as a warm species for temperature estimates, the thermocline-dwelling species Pulleniatina obliquiloculata increased its numbers during glacial periods. This implies an estuarine circulation and even brackish-water caps during glacial periods, reinforcing the sense of strong run-off. In an overall decline of warm water, the thermocline shoaled stepwise, with rapid rises across the glacial terminations. We infer that the southern SCS was opened to an influx of Indian Ocean waters through southern passages at those times of rising sea levels.  相似文献   

8.
Today, below 2500 m, benthonic foraminiferal faunas in the North Atlantic are dominated by a few species. Faunal composition changes slowly with increasing depth and decreasing temperature. Surface sediment and down-core counts of benthonic foraminifera reported by Phleger, Parker, and Peirson (1953) in the reports of the Swedish Deep-Sea Expedition have been supplemented by additional bottom sediment and piston core samples. Present-day benthonic foraminiferal assemblages from the deeper portions of the North Atlantic appear to be controlled more by the distribution of bottom water types than by bathymetry. In most piston cores, the assemblages vary greatly during the last 150,000 yr, suggesting depression and elevation of faunas at the core site through a depth range of several hundred meters. This would indicate that bottom water characteristics have shifted back and forth in this interval of time and, therefore, that bottom circulation partakes in the well-documented shifts recorded for surface waters of the North Atlantic. It appears that dense water, similar to present-day North Atlantic Deep Water, was produced over a wide area north of 45° N during cooler intervals and that it spread widely at depth.  相似文献   

9.
南海北部陆坡ODP 1144站位第四纪硅藻及其古环境演变   总被引:9,自引:0,他引:9  
李家英 《地质论评》2002,48(5):542-551
中国南海北部陆坡ODP 1144站位硅藻植物群的研究,建立了西太平洋边缘海一个新的中更新世晚期以来的硅藻生物地层图式,根据硅藻化石中具有指示意义的硅藻种的分布和生态变化(暖水种和冷水种),划分了8个硅藻组合带,其硅藻组合带分别在不同的高低海面环境下形成的,根据ODP1144站位氧同位素(OIS)测定结果,8个硅藻组合带与OIS 1-8期相对应。1、3、5、7硅藻组合带相当于OIS1、3、5、7期,间冰期是以热带和亚热带硅藻占优势,其中冷期出现大量的沿岸硅藻为特征,反映高海平面温暖的气候条件;2、4、6、8硅藻组合带相当于OIS2、4、6、8期,冰期是以亚热带,热带和出现较多冷水硅藻为特征,反映低海平面较冷气候条件,硅藻丰度值的变化与冰期和间冰期有关,可以证实间冰期时期高的海平面和较低的生物生产力以及冰期时低的海平面和高的生物生产力,而生物生产力的变化又与沉积时期沿岸流或上升流的强弱及水团活动有密切关系,进而揭示该区古海洋环境的演化与季风强弱之间的内在关系。  相似文献   

10.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

11.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Calculations based on temperature-corrected oxygen-isotope ratios from deep-sea cores yield a glacioeustatic sea-level fall in excess of 50 m during the first 10,000 yr of the last glaciation, and generally support the local regression of about 70 m inferred from tectonically rising New Guinea beaches. We propose that this rapid glacial buildup depended on high-latitude cooling, and large increases of high-latitude regional winter precipitation in the Laurentide and the Fennoscandian-Barents Sea areas, and that these factors were caused by a critical alteration of North Atlantic Drift currents and their associated subpolar atmospheric circulation. In support of this, faunal data from northeast North Atlantic deep-sea cores show that the glacial buildup was accompanied by a sudden loss of most of the North Atlantic Drift from the Greenland-Norwegian Sea, a factor favoring reduced heat input into the higher latitudes. Subpolar mollusk and foraminifera fauna from elevated marine deposits on the Baffin Island coast, and northwest North Atlantic core data suggest a continuation or an associated restoration of subpolar water west of Greenland as far north as Baffin Bay, a factor favoring precipitation in the northeast Canadian region. Heat transport and atmospheric circulation considerations suggest that the loss of the northeast North Atlantic Drift was itself a major instrument of high-latitude climate change, and probably marked the initiation of major new ice-sheet growth.  相似文献   

13.
Fossil ostracod assemblages were investigated in five AMS 14 C‐dated cores from various water depths of the Laptev and Kara seas ranging from the upper continental slope (270 m) to the present‐day shelf depth (40 m). Six fossil assemblages were distinguished. These represent the varying environmental conditions at the North Siberian continental margin since about 18 ka. In the cores from the shelf the ostracod assemblages reflect the gradual transition from an estuarine brackish‐water environment to modern marine conditions since 12.3 ka, as induced by the regional early Holocene transgression. The core from the upper continental slope dates back to c. 17.6 ka and contains assemblages that are absent in the shelf cores. The assemblage older than 10 ka stands out as a specific community dominated by relatively deep‐water Arctic and North Atlantic species that also contains euryhaline species. Such an assemblage provides evidence for past inflows of Atlantic‐derived waters from as early as c. 17.2 ka, probably facilitated by upwelling in coastal polynyas, and a considerable riverine freshwater influence with enhanced surface water stratification owing to the proximity of the palaeocoastline until early Holocene times. In all studied cores, relative increases in euryhaline species dominant in the inner‐shelf regions are recorded in the mid–late Holocene sediments (<7 ka), which otherwise already contain modern‐like ostracod assemblages with relatively deep‐water species. This observation suggests euryhaline species to be largely sea‐ice‐ and/or iceberg‐rafted and therefore may provide evidence for a climate cooling trend.  相似文献   

14.
A total of 85 samples, collected from the UBGH1-9 core taken from the Ulleung Basin, East Sea, Korea, were analyzed using diatom assemblages. 111 diatom species belonging to 46 genera were identified, and three diatom assemblage zones were established on the basis of occurrence and distribution pattern of diatoms. Diatom assemblage zone I(134.10–174 m) is characterized by a relatively high abundance of marine species, while the increased number of the brackish species is recorded in diatom assemblage zone II(75–125 m). The assemblage zones IIIa became drastic drop of valve abundances and brackish planktons, whereas it became increase during the IIIb. High Td values which indicate an influence of warm current are recorded both in diatom assemblage zone I and III, and low Td values in diatom assemblage zone II. Analysis of diatom assemblages indicating that the depositional condition moved from oceanic to littoral-neritic environments and that paleotemperature underwent a shift from warm to cold condition at the middle interval, and from cold to warm condition in the upper interval of the UBGH1-9 core. This suggests that the lower(130–162 m) and upper intervals(0–20 m) of the UBGH1-9 core were deposited in the warm current condition(Tsushima Warm Current).  相似文献   

15.
Foraminifera from surface samples in the Kattegat and the Skagerrak, northwestern Europe, have been analysed to determine the modern foraminiferal distribution. A total of five foraminiferal assemblages are distinguished. These are the Elphidium excavatum, Cassidulina laevigata, Bulimina marginata, Cibicides lobatulus and Trochammina sp. assemblages. Only the first three are found over large areas and these are correlated to either depth, organic carbon content or grain size. At each station a short core was studied to determine whether changes have occurred in the assemblages during the last few hundred years. In some areas no such variations were found, but several of the cores from the Skagerrak and all cores from the Kattegat document changes within this period. The fluctuations in the Skagerrak may be attributed to natural causes, such as species migrations or re-deposition. In the Kattegat a change from a Hyalinea balthica assemblage to the modern B. marginata assemblage always occurs at approximately the same core depth, which presumably represents the biological mixing depth. This change is presumably due to anthropogenic influences, which have caused oxygen depletion in the bottom waters of the Kattegat during the last few decades.  相似文献   

16.
文章通过SHI9034岩芯氧同位素曲线、AMS14C测年、浮游有孔虫组合及其所反映的温盐变化特点,并与爪哇海北部的SHI9006岩芯对比研究,获得如下认识:末次冰期21~15kaB.P.阶段,爪哇海区东南季风强而西北季风微弱,气候冷干,混合层薄,生物生产力高;15~10kaB.P.和10~7kaB.P.阶段由于海平面迅速上升,望加锡海峡和龙目海峡通道变宽,出现较强的表层穿越流活动;早全新世东南与西北季风都有增强,说明当时研究区气候有着更强的季节性;7~3kaB.P.阶段,爪哇海北部的穿越流主要在温跃层水中传输,到达爪哇上升流区时,上升至表层,使得混合层增厚,同时也抑制了上升流活动;约3kaB.P.以来,研究区穿越流活动表现与现代相近的性质,主要在温跃层水中传输。  相似文献   

17.
Post‐glacial, neritic cool‐water carbonates of the Western Mediterranean Sea were examined by means of hydroacoustic data, sediment surface sampling and vibrocoring to unravel geometries and to reconstruct sedimentary evolution in response to the last sea‐level rise. The analysed areas, located on the Alboran Ridge, in the Bay of Oran, and at the southern shelf of the island of Mallorca, are microtidal and bathed by oligotrophic to weakly mesotrophic waters. Seasonal water temperature varies between 13 °C and 27 °C. Echosounder profiles show that the Bay of Oran and the southern shelf of Mallorca are distally steepened ramps, while the Alboran Ridge forms a steep‐flanked rugged plateau around the Alboran Island. In the three areas, an up to 10 m thick post‐glacial sediment cover overlies an unconformity. In Oran and Mallorca, stacked lowstand wedges occur in water depths of 120 to 130 m. On the Alboran Ridge and in the Bay of Oran, highstand wedges occur at 35 to 40 m. Up to 5 m long cores of upper Pleistocene to Holocene successions were recovered in water depths between 40 and 81 m. Deposits contain more than 80% carbonate, with mixed carbonate‐volcaniclastics in the lower part of some cores in Alboran. The carbonates consist of up to 53% of aragonite and up to 83% of high magnesium calcite. Radiocarbon dating of bivalve shells, coralline algae and serpulid tubes indicates that deposits are as old as 12 400 cal yr bp . The carbonate factories in the three areas are dominated mostly by red algae, but some intervals in the cores are richer in bivalves. A facies rich in the gastropod Turritella, reflecting elevated surface productivity, is restricted to the Mallorca Shelf. Rhodoliths occur at the sediment surface in most areas at water depths shallower than 70 m; they form a 10 to 20 cm thick veneer overlying rhodolith‐poor bioclastic sediments which, nonetheless, contain abundant red algal debris. This rhodolith layer has been developing for the past 800 to 1000 years. Similar layers at different positions in the cores are interpreted as reflecting in situ growth of rhodoliths at times of reduced net sedimentation. Sedimentary successions in the cores record the post‐glacial sea‐level rise and the degree of sediment exposure to bottom currents. Deepening‐upward trends in the successions are either reflected by shallow to deep facies transitions or by a corresponding change of depth‐indicative red algae. There are only weak downcore variations of carbonate mineralogy, which indicate that no dissolution or high magnesium to low magnesium calcite neomorphism occurs in the shallow subsurface. These new data support the approach of using the Recent facies distribution for interpretation of past cool‐water, low‐energy, microtidal carbonate depositional systems. Hydroacoustic data show that previous Pleistocene transgressive and highstand inner ramp deposits and wedges were removed during sea‐level lowstands and accumulated downslope as stacked lowstand wedges; this suggests that, under conditions of high‐amplitude sea‐level fluctuations, the stratigraphic record of similar cool‐water carbonates may be biased.  相似文献   

18.
《Quaternary Science Reviews》2003,22(10-13):1191-1199
Pleistocene and Holocene transgressions advancing over the shelf that was exposed during glacial maxima drowned any continental and shallow marine sediments deposited during low sea level stands. To complement records from sequences exposed on land, core material from the shallow continental shelf is needed to reconstruct climatic and sea level fluctuations. Two cores drilled offshore Ashqelon off the southern Mediterranean coast of Israel, in a water depth of 10 and 25 m, were analyzed. Sedimentary facies and faunal analyses indicate that most of the sediments were deposited in nearshore environments, with only short intervals of continental episodes. Luminescence dating of alkali feldspar and quartz, as well as 14C ages of mollusks, date the cores to marine oxygen isotopic stages 6–1, between ∼140 and 5 ka. Comparison between the dating methods shows that most alkali feldspar ages agree with independent sea level and sedimentological constraints while quartz ages are overestimated.  相似文献   

19.
The presence of the Brunhes-Matuyama magnetic reversal in deep-sea core sediments makes possible an alternative to the usual K/Ar radioistope method of dating the reversal as found in rocks. The alternative method uses correlations of Northern Hemisphere summer insolation with oxygen-isotope ratios from tropical cores. The latitude-dependent insolation variations are calculated from planetary mechanics and thus provide a highly accurate astronomical time scale. The insolation variations strongly influence glacial-ice volume fluctuations that dominate the oxygenisotope ratio changes recorded in core sediments. The summer half-year insolation variations are identified with corresponding isotope-ratio changes in cores from the present through glacial Stage 20. Misleading effects of discontinuities or major nonuniformities of sediment deposition are avoided by an analysis of the uniformity of V28-238 and V28-239, the principal cores studied, and by comparisons with other cores. The top section (Stages 1 to 10) of V28-238 is uniformly deposited, and for this section an isotope-ratio time scale is chosen that agrees with the thorium-uranium date for the high sea stand of the last interglacial extreme. Over this interval, major glacial extremes (strong isotope-ratio minima) coincide consistently with major insolation minima at times of low orbital eccentricity. In addition interstadials are directly associated with precessional insolation peaks, and the envelope of isotope-ratio peaks resembles the envelope of precessionally dominated insolation peaks. The assumption that the glacial extremes depended similarly on insolation minima during Stages 10 to 20 permits minor age shifts of strong isotope-ratio minima in the two cores (relative to ages based on uniform overal deposition) to match the ages of low-eccentricity insolation minima. The age shifts reflect residual nonuniformities of deposition. The validity of this matching procedure is supported by a resulting consistent identification of principal isotope-ratio peaks with high- and low-latitude coincident insolation maxima. The Brunhes-Matuyama reversal is found intinterglacial Stage 19, and is dated on the astronomical time scale at 790,000 ± 5000 yr B.P.  相似文献   

20.
郑范  李前裕  陈木宏 《地球科学》2006,31(6):780-786
南海北部ODP1144站中更新世气候转型时期的浮游有孔虫在千年尺度上以高频率变化为主要特征.冰期旋回主要周期在0.9Ma由41ka转变为100ka, 浮游有孔虫组合也随冰期旋回出现大量的冷水种.据转换函数得出的表层水降温高达10℃发生在0.9~0.6Ma间的转型过渡期, 跨越MIS22、20、18、16四大冰期.同时, 温跃层深度呈阶梯式变浅, 在MIS20上升至65m左右.所以, 南海北部上层水体环境在中更新世气候转型期出现比末次冰期更重的δ18O值, 温跃层变浅, 深水种含量降低或消失, 突出了边缘海区南北气候梯度反差和冬季风在冰期增强的讯号.南海南北部的环境差异与东西太平洋的差异, 共同表明低纬过程在气候变化中的重要性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号