首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent information on some consequences of the acute mid-water oxygen deficiency in the Arabian Sea, especially on carbon-nitrogen cycling, is reviewed. An evaluation of published estimates of water column denitrification rate suggests an overall rate in the vicinity of 30Tg Ny-1, but the extent of benthic contribution remains unknown. A decoupling of denitrification from primary production, unique to the Arabian Sea, is revealed by nitrite, electron transport system (ETS) activity and bacterial production data. Results of both enzymatic and microbiological investigations strongly point to a major role of organic carbon other than that sinking from surface layers in supporting denitrification. Although denitrification is associated with an intermediate nepheloid layer, it seems unlikely that the excess carbon comes with particles re-suspended along the continental margins and transported quasi-horizontally into the ocean interior; instead, the particle maximum may directly reflect a higher bacterial abundance. It is proposed that denitrification may be predominantly fuelled by the dissolved organic matter.  相似文献   

2.
In the Arabian Sea, temporal contiguity of highly oligotrophic and eutrophic periods, along with high water temperatures, may result in unique features of bacteriaorganic matter coupling, nutrient cycling and sedimentation, which are unlike those in the classical oligotrophic and eutrophic waters. Bacteria-phytoplankton interactions are suggested to influence phytoplankton aggregation and its timing. It is also hypothesized that, within aggregates, hydrolytic ectoenzyme activity, together with condensation reactions between the hydrolysis products, produce molecular species which are not readily degraded by pelagic bacteria. Accumulation of a reservoir of such slow-to-degrade dissolved organic carbon (DOC) is proposed to be a carbon flux and energy buffer, which moderates the response of bacteria to the dramatic variations in primary production in the Arabian Sea. Use of the slow-to-degrade DOC pool during the intermonsoon could temporarily render the Arabian Sea net-heterotrophic and a source of CO2 to the atmosphere. Stored DOC is also suggested to balance the observed deficit between mesopelagic carbon demand and the sinking particulate organic carbon supply. Knowledge of the significance of bacteria in carbon storage and cycling in the Arabian Sea is needed to understand the response of the ocean’s biogeochemical state to strong physical forcing and climate change.  相似文献   

3.
Carbonates from the Keg River Formation, La Crete Basin, Alberta, western Canada were examined in order to define: (a) oil source rock potential; (b) bulk maceral composition; (c) extract yield; and finally (d) facies variations using PY-GC-MS. Thirty samples from 6 different wells were examined from the lower Keg River member and 4 from the upper Keg River member using conventional geochemical methods. As maturity differences are absent within the sample set, variations in TOC, Tmax, hydrogen index, organic petrography and extract yields are caused by variability in organic matter input, which is revealed by molecular characterisation using PY-GC-MS. Lower Keg River member bituminous wackestones are excellent potential source rocks containing Types I–II and Type II organic matter. Types I–II organic matter contains large well preserved (up to 200μm in diameter) thick-walled Tasmanites (10–15% of sample) and akinete algal cells indicative of algal blooms within an amorphous bituminite. Type II organic matter contains a higher proportion of degraded alginites/bituminite relative to well-preserved alginites. Extract yields (mg/g TOC) were seen to increase from Types I–II to Type II organic matter. PY-GC-MS revealed that 1,2,3,4-tetramethylbenzene was a major peak in most samples. This is a pyrolysis product arising from β-cleavage of C40 diaromatic carotenoids incorporated within the kerogen during diagenesis. The source of this compound is thought to be from an unknown diaromatic compound with a 2,3,6-/3,4,5-trimethyl substitution pattern and isorenieratene, which is specific to photosynthetic green sulphur bacteria (Chlorobiaceae) suggesting that the photic zone was at least partially anoxic during deposition of these samples. The relative abundance of this compound/n-C11-alkene and organic sulphur (calculated from the thiophene ratio) both increase from Types I–II to Type II organic matter. This trend was grossly similar to the trend seen in the variability of extract yield with hydrogen index. A similar trend for HI and Tmax indicates samples containing a higher proportion of degraded alginites/bituminite relative to well-preserved alginite are more labile than Type I–II organic matter. Upper Keg River member marls contain Type II organic matter, which is characterised by heavily degraded algal material within a bituminous groundmass. Pyrolysates of two of the marl samples contain only low amounts of 1,2,3,4-tetramethylbenzene, in contrast to the bituminous wackestones, indicating that the depositional environment/source input was different during deposition of the marl samples. Although both marls contain similar organic matter, their pyrolysates were significantly different. One marl (1141.9 m) was highly paraffinic containing dominantly short-chain alkene/alkane doublets, while the other marl (1137.6 m) contained a bimodal n-alkane/alkene distribution and high amounts of alkylphenols, which may be derived from preservation of resistant algal polyphenolic molecules or suggest a terrestrial input.  相似文献   

4.
Variations in the carbon isotopic composition (δ13C) of pristane, phytane, n-heptadecane (n-C17), C29 ααα 20R sterane, and aryl isoprenoids provide evidence for a diverse community of algal and bacterial organisms in organic matter of the Upper Ordovician Maquoketa Group of the Illinois Basin. Carbon isotopic compositions of pristane and phytane from the Maquoketa are positively covariant (r = 0.964), suggesting that these compounds were derived from a common source inferred to be primary producers (algae) from the oxygenated photic zone. A variation of 3‰ in δ13C values (−31 to −34‰) for pristane and phytane indicates that primary producers utilized variable sources of inorganic carbon. Average isotopic compositions of n-C17 (−32‰) and C29 ααα 20R sterane (−31‰) are enriched in 13C relative to pristane and phytane (−33‰) suggesting that these compounds were derived from a subordinate group of primary producers, most likely eukaryotic algae. In addition, a substantial enrichment of 13C in aryl isoprenoids (−14 to −18‰) and the identification of tetramethylbenzene in pyrolytic products of Maquoketa kerogen indicate a contribution from photosynthetic green sulfur bacteria to the organic matter. The presence of anaerobic, photosynthetic green sulfur bacteria in organic matter of the Maquoketa indicates that anoxic conditions extended into the photic zone.The δ13C of n-alkanes and the identification of an unusual suite of straight-chain n-alkylarenes in the m/z 133 fragmentograms of Ordovician rocks rich in Gloeocapsomorpha prisca (G. prisca) indicate that G. prisca did not contribute to the organic matter of the Maquoketa Group.  相似文献   

5.
The New York Bight is a sector of the Middle Atlantic continental shelf. The Bight consists of a part of the Atlantic Ocean offshore of the New York and New Jersey metropolitan area. This area includes the most populated coastal setting in North America. The Atlantic shelf and its estuaries are used for waste disposal, dredging, commercial fishing, and recreation; activities that contribute to the contamination of associated bottom sediments. Existing data for toxicants are still inadequate. Improvements in sediment and water quality will require a more detailed knowledge and understanding of sediments and water in the Bight. Eleven coring stations were established in New York Bight. Decreases in pH and Eh both above and below the water/sediment interface are attributed to the activity of anaerobic bacteria. Sulfate reduction is one of the important processes in lowering pH. Low Eh values of up to −443 can be related to sulfate-reducing bacteria. The highest negative Eh generally occurs with the highest organic carbon concentration. Core samples yielded up to 4.00% organic carbon compared to 0.8 to 1.2% in sediments of the natural nearshore environment. Twenty-seven different aliphatic hydrocarbons, fourteen PAHs, five cyclic hydrocarbons, and eight dicarboxylic acids were identified in the Bight pore waters. Sediment located deeper in the Hudson Shelf Valley has a greater abundance of aliphatic hydrocarbons as adsorbed pollution on clay and silt. The presence of dicarboxylic acids leached from plastic came from anthropogenic activities (mostly sewage). PAHs have two sources: coal ash (observed in sediments) and petroleum (part of the sewage, run-offs, and oil spills). The rest of the hydrocarbons have a petroleum or biogenic origin. The high amount of organic carbon may be the result of sewage sludge or originated from natural sources. The main sources of contaminants are dumpsites, emergency releases after heavy rainstorms from sewage-treatment plants, tanker washing, storage transfer spills, run-off, and air-borne pollution. The relatively high accumulation of organic matter causes oxygen depletion, which creates anaerobic conditions. The presence of hydrogen sulfide makes the environment toxic for most of the biota. Detected hydrocarbons, especially PAHs easily enter the food chain and may cause cancer and mutagenic reactions of biota and humans. Organic petrology of six organic-rich sediments from New York Harbor illustrates a diverse population of anthropogenic and natural organic components. Three core samples (V-2, AC-4, and HV-3) contain coarse-textured organic matter. A slim majority of those components are anthropogenic. They are derived mainly from coal combustion by-products. The other two core samples (AC-6 and T-1) contain mainly very fine-grained organic matter. A majority of them are amorphous organic matter (AOM) that is derived from bacterial degradation of modern organic matter. Radionuclide dating (137Cs, K-40, Pb-210) shows post-1950 components for the shallowest intervals in the cores (<30 cm). The post-1950 sediment, distributed in the tops of core, is recycled material from the dumpsites. The underlying sediment has isotopic signatures that suggest dates before active dumping.  相似文献   

6.
菌根真菌对土壤中有机污染物的修复研究   总被引:12,自引:0,他引:12  
菌根真菌是真菌与植物之间特殊的联合共生体,利用菌根真菌修复土壤,尤其是修复有机污染物污染的土壤,正成为一个崭新的研究方向。菌根真菌是土壤真菌的一种,但与土壤中放线菌和细菌等微生物相比,其对土壤中有机污染物具有更大的忍耐能力,并且能利用土壤中大多数持久性有机污染物作为碳源来获取能量。综述了近20年菌根真菌对土壤有机污染物降解研究,讨论了菌根真菌降解土壤有机污染物的可能机制,并探讨了从引入固氮菌、外源细菌两个方面对菌根调控以提高修复效果的可能性,为进一步研究菌根真菌生物降解土壤中持久性有机污染物、利用菌根植物修复有机污染土壤提供信息。  相似文献   

7.
Aquatic humic substances (AHS) have been intensively studied because they have a number of significant biogeochemical functions in water chemistry. In order to evaluate such functions, which are regulated by their quantity and quality, a quantitative understanding of AHS is necessary. This study shows the seasonal and vertical changes in the AHS concentration in Lake Biwa, the largest monomictic lake in Japan, over 4 years. The concentration of dissolved organic matter carbon (DOM-C) and AHS carbon (AHS-C) ranged from 0.85–1.6 mg C/l and 0.32–0.71 mg C/l, respectively. The percentages of AHS-C in the DOM-C ranged from 32% to 65%. At all depths, the DOM-C decreased and the AHS-C slightly increased or remained at nearly the same level, suggesting that the quality of the water may have changed mainly due to changes in the composition of the organic matter. Although the AHS-C to DOM-C ratio fluctuated and had no seasonal tendency, the average AHS-C ratio increased during the 4 year monitoring period. Because AHS can influence the entire food web starting with phytoplankton, unraveling the mechanism by which they accumulate remains an important goal.  相似文献   

8.
许多学者探讨过菌藻生物与形成南京栖霞山铅锌银多金属矿床的预富集作用。然而,生物成矿作用是一个随地质作用的发展而发展演化的过程,本文详细研究了矿床中的矿化生物以及矿石中的吸附有机质,证实它们源自菌菏生物,结合非打开性的红外和荧光光谱方法以及打开性的GC-MS分析,重点研究了矿床中发现的有机包裹体,检测出成矿流体中的系列生物标志化合物,证实成矿流体中的有机质也源自菌藻生物。根据成矿流体中有机质特征,矿石中成矿元素闻的关系以及有机质中所古的金属元素,论证了这些源自苗藻生物的有机质、有机流体对成矿元素的活化迁移和还原沉淀作用,建立了生物-有机质-流体成矿系统。  相似文献   

9.
惠荣耀  丁安娜 《沉积学报》2019,37(2):424-431
石油是生物地质作用的产物,沉积物中有机质的组成和结构影响着石油天然气的生成。微生物改造有机质形成石油、天然气具有明显的阶段性:1)易溶于水的有机质和分子量小、成分简单的化合物优先参与到成油中形成低熟油。2)成熟油的有机母质主要为来自水生生物、藻类的脂肪和蛋白质,其次为来自陆源有机质中的碳水化合物脂肪分解菌、蛋白质分解菌、产氢菌等;脂肪酸初始阶段不溶于水,只有当环境中不存在占优势的其他碳源物质时,微生物才能利用和分解脂类进行生长。3)高演化阶段生存着大量的嗜热、超嗜热产甲烷菌,来自于陆源植物的纤维素、木质素、高分子聚合物等许多在成熟阶段难以降解的有机质在高演化阶段可以发生降解。成油过程要经过降解有机质、去除含氧基团、产氢菌产氢、耗氢菌用氢等过程,较成气过程更为复杂。  相似文献   

10.
The organic matter-rich Toolebuc Formation of eastern Australia was deposited in a Lower Cretaceous epicontinental sea. Parameters from biological marker studies indicate that the organic matter is immature to marginally mature for hydrocarbon generation. The occurrence of abundant coccoliths and the distribution of alkane biomarkers suggest that the organic matter (Type II) is largely of planktonic origin and only in the southeastern part of the depositional area can a terrestrial influence be discerned. Variations in kerogen composition can be attributed to the extent of the oxidation of the source materials and the degree of incorporation of sulphur. The atomic H/C ratios (c. 1.1) are remarkably constant for most of the Toolebuc Formation. Atomic O/C ratios vary from 0.1 and 0.4 and can be related both to depth and paleogeographic position. Kerogen sulphur contents range up to 7%, and the highest values occur in the most carbonate-rich sediments. Total sulphur (inorganic + organic) to carbon ratios in the sediments vary from 1 to <0.2 and are a function of paleogeographic position and lithology. Most of the sulphur in the sediments is in the form of pyrite, but the proportion of sulphur in organic form increases as the total sulphur content decreases. The evidence for oxidation of the organic matter and incorporation of sulphur into it during deposition suggests that bituminite, which is the dominant organic maceral in the Toolebuc Formation, was formed from an organic gel derived by decay of predominantly algal material. These data support a modified gyttja model (Kauffman, 1981) for the deposition of organic matter in the Toolebuc Formation.  相似文献   

11.
Organic petrology (incident light microscopy) of Middle Devonian inter-reef laminates and Devonian-Mississippian epicontinental black shales, Williston Basin, Canada, indicates that algal bloom episodes and consequential bacterial activity played a significant role in the accumulation of amorphous, bituminite III-rich organic microfacies. Corpohuminite-like algal akinete cells produced by filamentous algae during algal bloom periods are persistent maceral inclusions within the potential hydrocarbon source rock intervals. These cells (%Ro mean range 0.24-0.90) are regarded as positive indicators of stressful palaeoenvironmental conditions. Unicellular Tasmanites and Leiosphaeridia marine alginite and variably degraded alginite remnants (“ghosts”) within the amorphous kerogen may be products of cell lysis, photo-oxidation and microbial alteration; these processes are characteristic of algal bloom periods. Minute (ca. 1 μm) spheroidal and coccoidal bacteria-like macerals are dispersed throughout the bituminite III network, attesting to the importance of microbial activity within the water column and sediment during and after organic matter accumulation. Dispersed granules, laminations and replacement textures of micrinite-like macerals within bituminite III are interpreted as remnants of microbial alteration rather than a residual product of thermal maturation and hydrocarbon generation.  相似文献   

12.
Marine black shales of the Lower Cambrian Niutitang Formation in southern China host Mo–Ni–platinum group elements (PGE) mineralization confined to a phosphate- and pyrite-rich stratiform body (max. 20-cm thick). The H/C atomic ratio, carbon isotopic composition, FTIR spectra of bulk organic matter, and spectra of extractable part of organic matter indicate similar sources and thermal evolution of organic matter in barren and mineralized black shales.The morphology and relative abundance of organic particles in barren and mineralized shales are different. In barren black shales, organic particles comprise only elongated bodies and laminae 2–10 μm across or elongated larger bodies (> 10 μm) with Rmax = 2.96–5.21% (Type I particles). Mineralized black shales contain Type I particles in rock matrix (90–95 vol%), small veinlets or irregular organic accumulations (Type II particles, 1–5 vol%) that display weak to well developed mosaic texture and a variable reflectance (Rmax = 3.55–8.65%), and small (< 1 to 5 μm) rounded or irregular Type III organic particles (1–4 vol%) distributed within phosphate nodules and sulphide rip-up clasts. Type III particles show similar reflectance as particles of Type I in rock matrix. Type I particles are interpreted as remnants of in situ bacterially reworked organic matter of cyanobacteria/algal type, Type II as solidified products or oil-derived material (migrabitumen), and Type III particles as remnants of original organic matter in phosphatized or sulphidized algal/microbial oncolite-like bodies. Equivalent vitrinite reflectances of Type I and III particles in barren and mineralized rocks are similar and correspond to semi-anthracite and anthracite. Micro-Raman spectra of organic particles in rocks display a wide belt in the area of 1600 cm− 1 (G belt) and approximately the same belt in the area of 1350 cm− 1 (D belt). The ratio of integrated areas of the two belts correlate with Rmax values.The Mo–Ni–PGE mineralized body is interpreted as to represent a remnant of phosphate- and sulphide-rich subaquatic hardground supplied with organic material derived from plankton and benthic communities as well as with algal/microbial oncolite-like bodies that originated in wave-agitated, shallow-water, nearshore environment.  相似文献   

13.
Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4‰ in the δ 13C values of the organic matter is observed as a result of early diagenesis.  相似文献   

14.
Samples from two lignite seams (Lower Seam, Upper Seam) of the Lavanttal basin (Austria) and additional xylite were investigated for variations in maceral composition, petrography-based facies indicators, bulk geochemical parameters, and molecular composition of hydrocarbons. Both seams originated in a topogenous mire and evolved within a transgressive setting. The final drowning of the mire is indicated by sapropelic shales. Whereas the sapropelic shale overlying the Lower Seam was deposited in a freshwater lake, the sapropelic shale above the Upper Seam represents a brackish lake.Numerous relationships are found between petrography-based facies indicators and the geochemical composition of organic matter. The contents of macerals of the liptinite group are positively correlated with soluble organic matter (SOM) yields and hydrogen index (HI). Consistent with maceral composition and high HI values, enhanced proportions of short-chain n-alkanes, which are predominantly found in algae and microorganisms, are obtained from samples of the sapropelic shales. The final drowning of the mire is reflected by decreasing pristane/phytane ratios, due to the rise in (ground)water table and the establishment of anaerobic conditions, as well as by decreasing ratios of diasterenes/sterenes, indicating increasing pH values in the mire. The degree of gelification of plant tissue (gelification index) is governed by the microbial activity in the mire, as indicated by the hopanes concentration. The differences in floral assemblage during the formation of the Lavanttal lignite seams are reflected by major differences in tissue preservation. Preservation of plant tissue (TPI) in the Lavanttal lignite is obviously controlled by the presence/absence of decay-resistant gymnosperms in the peat-forming vegetation, and additionally influenced by the relative contribution of wood to coal formation. The results provide evidence that valuable information for coal facies characterization could be obtained by petrography-based and geochemical facies indicators. An influence of the floral assemblage (gymnosperms/angiosperms ratio) and of the contribution of algal biomass on carbon isotopic composition of the organic matter (δ13C = − 24.2 to − 28.6‰) is proposed. Carbon cycling during biogeochemical decomposition of plant tissue by bacteria is suggested to affect the δ13C values of the coal. The chemotaxonomical classification of the xylites as gymnosperm remnants, based on the molecular composition of terpenoid biomarkers, is corroborated by the carbon isotopic composition of the xylites (mean δ13C = − 24.1‰) and the extracted cellulose (mean δ13C = − 20.2‰). The higher isotopic difference of about 3.9‰ between cellulose and total organic carbon of the xylites, compared to the difference between cellulose and wood found in modern trees, is explained by the smaller effect of decomposition on δ13C of cellulose.  相似文献   

15.
In the Lycian Basin (SW Turkey), the Miocene Karabay?r and Karaku?tepe formations consist of algal limestone, conglomerate, sandstone, shale and limestone. Total organic carbon (TOC) analysis of the Miocene units show that these formations are poor in organic matter. TOC values are generally between 0.02 and 0.51%, but reach 3.47% in the Karabay?r Formation. Hydrogen indices (HI) are mostly below 600 mgHC/gTOC, increasing to 1200 mgHC/gTOC in the Karabay?r Formation. S2 vs. TOC diagrams are used to evaluate the sedimentary environments and hydrocarbon potential of the Lower–Middle Miocene sediments (the Isparta, Bucak and Korkuteli‐Elmal? areas). The organic material contains about 63 (type I), 35 (type II) and 29 (type II/III) pyrolysable hydrocarbons, respectively. The dominant organic matter is type II kerogens, and hydrocarbon generating potential is quite low. A positive x‐intercept has been calculated in analysed samples according to S2 vs. TOC diagrams; this value shows a rock‐matrix effect. Clay is the main agent of adsorption. Biomarker characteristics also verify these results. Isoprenoid rates are Pr/Ph: 2, Pr/n‐C17: 1.9, and Pr/n‐C18: 0.5, and a high Pr/Ph ratio (pristane/phytane) indicates an oxic environment; the terpane C29 NH/C30 H ratio is >1 for the Karabay?r Formation, and this value indicates a carbonate lithology. On the other hand, the C25 NH/C30 H ratio is <1 for the Karaku?tepe Formation; this indicates that the hydrocarbons were derived from terrestrial organic matter. According to m/z 191 mass fragmentograms, the Miocene units contain oleanane, indicating a Tertiary age. The abundance of sterane C29>C28>C27 shows that the kerogens formed from algal organic matter.  相似文献   

16.
Surface sediment samples were collected from the Squamish River Delta, British Columbia, in order to determine the role of sediment surface area in the preservation of organic matter (OM) in a paralic sedimentary environment. The Squamish Delta is an actively prograding delta, located at the head of Howe Sound.Bulk total organic carbon (TOC) values across the Squamish Delta are low, ranging from 0.1 to 1.0 wt.%. The carbon/total nitrogen ratio (Corg/N) ranges from 6 to 17, which is attributed to changes in OM type and facies variations. The <25-μm fraction has TOC concentrations up to 2.0 wt.%, and a Corg/N ratio that ranges from 14 to 16. The 53–106-μm fraction has higher TOC concentrations and Corg/N ratios relative to the 25–53-μm fraction. The Corg/N ratio ranges from 9 to 18 in the 53–106-μm fraction and 5.5–10.5 in the 25–53-μm fraction. Surface area values for bulk sediments are low (0.5–3.0 m2/g) due to the large proportion of silt size material. Good correlation between surface area and TOC in bulk samples suggests that OM is adsorbed to mineral surfaces. Similar relationships between surface area and TOC were observed in size-fractionated samples. Mineralogy and elemental composition did not correlate with TOC concentration.The relationships between surface area, TOC and total nitrogen (TN) can be linked to the hydrodynamic and sedimentological conditions of the Squamish Delta. As a result, the Squamish Delta is a useful modern analogue for the formation of petroleum source rocks in ancient deltaic environments, where TOC concentrations are often significantly lower than those in source rocks formed in other geological settings.  相似文献   

17.
Particulate matter and interfacial sediment from a seasonally anoxic coastal salt pond were analyzed for fatty acids and sterols to examine variations in organic sources, and compositional changes across the oxic-anoxic interface in the water column and at the sediment-water interface. Fatty acid distributions in suspended particles varied seasonally and as a function of depth. Fatty acids of algal origin (e.g. 16:3, 16:4, 18:3, 18:4) were abundant in particles in oxic surface waters, but these labile components were depleted in particles from the anoxic zone which instead were enriched in bacterial fatty acids (e.g. 16:1Δ9, 18:1Δ11, anteiso-C15). Sterol distributionsvaried less than fatty acid distributions and particles throughout the water column reflected an upper water algal source with little in situ alteration. There was evidence for an in situ conversion of Δ5-stenols to 5(α)H-stanols in suspended particles in the anoxic zone. Sinking particles and the interfacial sediment were compositionally similar to each other, but different from suspended particles. These data reflect differences in particle source, transport and transformation processes occuring in the water column.  相似文献   

18.
The distribution of two classes of lipid biomarker compounds (fatty acids and sterols) was used in conjunction with several bulk parameters (total suspended solids, chlorophyll a, and particulate carbon and nitrogen concentrations) to examine spatial and temporal variability in the sources of particulate organic matter (POM) important to southern Chesapeake Bay. Based on these geochemical parameters, we found that suspended and sedimentary organic matter in the southern Chesapeake Bay is derived from autochthonous sources including a mixture of fresh and detrital phytoplankton, zooplankton, and bacteria. The dominant factor contributing to temporal variability during our study was phytoplankton productivity. Enrichments in particulate organic carbon, chlorophyll a, total fatty acids, total sterols, and a number of biomarkers specific to phytoplankton sources were found in particles collected from surface (1 m) and deep (1 m above the bottom) portions of the water column at several sites during the spring bloom in March 1996 and during a localized bloom in July 1995. Comparison of sites at the mouths of two tributaries (York and Rappahannock rivers) to southern Chesapeake Bay with two sites located in the bay mainsterm indicates spatial variation in the composition of POM was not significant in this region of the bay. The energetic nature of this region of the Chesapeake Bay most likely contributes to the observed homogeneity. Comparison with biomarker studies conducted in other estuaries suggests the high levels of productivity characteristic of the Chesapeake Bay contribute to high background levels of POM.  相似文献   

19.
Sulphur isotope compositions and S/C ratios of organic matter were analysed in detail by combustion-isotope ratio monitoring mass spectrometry (C-irmMS) in eastern Mediterranean sediments containing three sapropels of different ages and with different organic carbon contents (sapropel S1 in core UM26, formed from 5–9 ka ago with a maximum organic carbon content of 2.3 wt%; sapropel 967 from ODP Site 160-967C, with an age of 1.8 Ma and a maximum organic carbon content of 7.4 wt%; and sapropel 969 from ODP Site 160-969E, with an age of 2.9 Ma and a maximum organic carbon content of 23.5 wt%). Sulphur isotopic compositions (34S) of the organic matter ranged from -29.5 to +15.8 and the atomic S/C ratio was 0.005 to 0.038. The organic sulphur in the sediments is a mixture of sulphur derived from (1) incorporation of 34S-depleted inorganic reduced sulphur produced by dissimilatory microbial sulphate reduction; and (2) biosynthetic sulphur with an isotopic signature close to seawater sulphate. The calculated biosynthetic fraction of organic sulphur in non-sapropelic sediments ranges from 68–87%. The biosynthetic fraction of the organic sulphur of the sapropels (60–22%) decreases with increasing organic carbon content of the sapropels. We propose that uptake of reduced sulphur into organic matter predominantly took place within sapropels where pyrite formation was iron-limited and thus an excess of dissolved sulphide was present for certain periods of time. Simultaneously, sulphide escaped into the bottom water and into sediments below the sapropels where pyrite formation occurred.  相似文献   

20.
A preliminary organic geochemical study shows that the sulphide ores from the hydrothermal deposit of the Okinawa Trough are generally low in the total organic carbon and extremely low in the soluble organic matter. In the aliphatic hydrocarbon fraction, the n-alkanes range from C15 to C35, with usual maxima in the middle n-C20 region and strong odd-carbon number predominance when n > C25 (CPI = 1.2). The dominant analog in the aromatic fraction is phenanthrene, a polynuclear aromatic hydrocarbon, which provides evidence for hydrothermal activity. The organic matter derived mainly from marine planktonic and terrigenous vascular plants is entrapped in a high-temperature regime such as an active chimney and cooled quickly in the sulphide ores on the seafloor. Organic matter and sulphides are definitely products of a high-temperature alteration. The biomarker compounds indicate that the ores are formed under low Eh and pH conditions-a reducing to anoxic environment, which is favourable for sulphates to be  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号