首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
红层是古地磁学的重要研究对象之一。以往对河湖相红层的古地磁研究较多,而对于风成红层的研究较少。因 此,对于风成红层剩磁记录是否可靠等基本问题仍然缺乏清晰的认识。文章对江西信江盆地上白垩统圭峰群塘边组风成 红层和河口组河流相红层开展了古地磁研究,并通过对比风成红层与河流相红层的古地磁结果,探究风成红层剩磁记录 的可靠性及不同沉积过程对古地磁记录的影响。逐步热退磁实验结果显示仅有19% 的塘边组风成红层分离出稳定的特征 剩磁,而且其强度衰减曲线为凸形,表明特征剩磁为碎屑赤铁矿携带的原生剩磁。其平均方向为Ds=15.6 °, Is=28.9 °, n= 25, κ=13.0, α95=8.3 °;对应的古地磁极为Latitude=70.7 °, Longitude=245.6 °, A95=6.8 °。该古地磁极与赣州地区河湖相红层 的古地磁极及华南晚白垩世的古地磁极位置一致,表明风成红层的剩磁记录是可靠的。河口组河流相红层绝大部分样品 未能分离出稳定的特征剩磁。磁化率各向异性结果显示塘边组和河口组为沉积组构。岩石磁学结果表明,载磁矿物为赤 铁矿和磁铁矿。通过对塘边组风成红层的薄片观察和红度值比较等进一步研究表明,颗粒粒度和胶结程度可能对红层剩 磁记录的稳定性有一定影响。  相似文献   

2.
红层是古地磁学的重要研究对象之一。以往对河湖相红层的古地磁研究较多,而对于风成红层的研究较少。因 此,对于风成红层剩磁记录是否可靠等基本问题仍然缺乏清晰的认识。文章对江西信江盆地上白垩统圭峰群塘边组风成 红层和河口组河流相红层开展了古地磁研究,并通过对比风成红层与河流相红层的古地磁结果,探究风成红层剩磁记录 的可靠性及不同沉积过程对古地磁记录的影响。逐步热退磁实验结果显示仅有19% 的塘边组风成红层分离出稳定的特征 剩磁,而且其强度衰减曲线为凸形,表明特征剩磁为碎屑赤铁矿携带的原生剩磁。其平均方向为Ds=15.6 °, Is=28.9 °, n= 25, κ=13.0, α95=8.3 °;对应的古地磁极为Latitude=70.7 °, Longitude=245.6 °, A95=6.8 °。该古地磁极与赣州地区河湖相红层 的古地磁极及华南晚白垩世的古地磁极位置一致,表明风成红层的剩磁记录是可靠的。河口组河流相红层绝大部分样品 未能分离出稳定的特征剩磁。磁化率各向异性结果显示塘边组和河口组为沉积组构。岩石磁学结果表明,载磁矿物为赤 铁矿和磁铁矿。通过对塘边组风成红层的薄片观察和红度值比较等进一步研究表明,颗粒粒度和胶结程度可能对红层剩 磁记录的稳定性有一定影响。  相似文献   

3.
We have completed a paleomagnetic reconnaissance study of sedimentary and volcanic extrusive rocks collected from two major tectonic zones in northeastern Russia. Paleomagnetic sites were sampled within the fault-bounded structural units of the Khatyrka and Maynitsky superterranes and an overlap sequence of the Khatyrka superterrane. These sampling localities were chosen to allow both within-site and between-site fold tests. Stepwise thermal demagnetization within the temperature range 200–640°C showed a characteristic linear demagnetization path between thermal demagnetization steps of 400°C and 530°C. For thermal steps above 550°C, the magnetic intensity of many samples began to increase rapidly with magnetic directions, which were random between heating steps, suggesting the formation of new magnetic phases in these samples. Paleomagnetic samples collected from basalts and sediments of the Khatyrka superterrane and basalts and gabbros of the Maynitsky superterrane pass fold tests and show significant poleward motion of these superterranes since the formation of their rocks. The observed paleomagnetic paleolatitudes between 24°N or S and 32°N or S can be compared with expected paleolatitudes of 57°N to 79°N. Paleomagnetic results from sites collected from overlapping Senonian rocks pass a fold test at the 99% confidence level and give a pole position not significantly different from that expected from the apparent polar wander path for the Eurasia or North America plates, suggesting that these sedimentary units overlapping the Khatyrka superterrane were deposited along the ancient northeast margin of the Eurasian plate. The declination, in stratigraphie coordinates, shows a maximum clockwise rotation of about 20° when compared with the Eurasian APWP.  相似文献   

4.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

5.
The island of Madagascar experienced widespread magmatism at ca. 90 Ma due to its interaction with the Marion hotspot. Previous paleomagnetic data from igneous rocks in the southwestern and northwestern regions of the island indicated that the Marion hotspot has remained fixed for the past 90 Ma. We report paleomagnetic data from northeastern Madagascar (d'Analava Complex). Samples were collected from basalts, rhyolites, gabbros and a dolerite dyke. Sixty samples from 5 sites yield a paleomagnetic pole at 66.7°S, 43.5°E (A95 = 10.7°) and a grand mean pole (GMP) calculated from 10 different studies covering the entire island of Madagascar falls at 68.9°S, 49.0°E (A95 = 4.4°). This pole translates to a paleolatitude for the Volcan de l'Androy (focal point of the hotspot) at 45.2° + 6°/− 5°S compared to the current location of the Marion hotspot at  46°S. Our results confirm, and expand upon, previous studies that argue for the fixity of the Marion hotspot for the past 90 Ma.  相似文献   

6.
Most titanomagnetite in the Khibina alkaline igneous complex, sampled through 500 m of a vertical cross-section, is represented by Ti-rich varieties. The ulvöspinel component is most commonly around 55 mol%, rarely reaching up to 80 mol%.

We calculated an fO2T diagram for magnetite + ilmenite + titanite + clinopyroxene + nepheline + alkali feldspar and magnetite + titanite+ clinopyroxene + nepheline + alkali feldspar phase assemblages at a hedenbergite activity of 0.2. The diagram shows that magnetites with 55 mol% of ulvöspinel crystallized at oxygen fugacities just slightly below the quartz–fayalite–magnetite buffer. More Ti-rich varieties crystallized at higher temperatures and slightly lower ΔQMF values, whereas more Ti-poor magnetites crystallized at or below about 650 °C.

Under the redox conditions estimated for the apatite-bearing intrusion of the Khibina complex (close to the QFM buffer), substantial quantities of methane may only form during cooling below 400 °C in equilibrium with magma. However, even at higher orthomagmatic temperatures and redox conditions corresponding to ΔQMF = 0, the hydrogen content in the early magmatic stage is not negligible. This hydrogen present in the gas phase at magmatic temperatures may migrate to colder parts of a solidifying magma chamber and trigger Fischer-Tropsch-type reactions there. We propose therefore, that methane in peralkaline systems may form in three distinct stages: orthomagmatic and late-magmatic in equilibrium with a melt and — due to Fischer-Tropsch-type reactions — post-magmatic in equilibrium with a local mineral assemblage.  相似文献   


7.
The only Iberian lower Jurassic paleomagnetic pole come from the “Central Atlantic Magmatic Province”-related Messejana Plasencia dyke, but the age and origin of its remanence have been a matter of discussion. With the aim of solving this uncertainty, and to go further into a better understanding of its emplacement and other possible tectonic features, a systematic paleomagnetic investigation of 40 sites (625 specimens) distributed all along the 530 km of the Messejana Plasencia dyke has been carried out. Rock magnetic experiments indicate PSD low Ti-titanomagnetite and magnetite as the minerals carrying the NRM. The samples were mostly thermally demagnetized. Most sites exhibit a characteristic remanent component of normal polarity with the exception of two sites, where samples with reversed polarities have been observed. The paleomagnetic pole derived from a total of 35 valid sites is representative of the whole structure of the dyke, and statistically well defined, with values of PLa = 70.4°N, PLo = 237.6°E, K = 47.9 and A95 = 3.5°. Paleomagnetic data indicates that: (i) there is no evidence of a Cretaceous remagnetization in the dyke, as it was suggested; (ii) most of the dyke had a brief emplacement time; furthermore, two dyke intrusion events separated in time from it by at least 10,000 y have been detected; (iii) the high grouping of the VGPs directions suggests no important tectonic perturbations of the whole structure of the dyke since its intrusion time; (iv) the pole derived from this study is a good quality lower Jurassic paleopole for the Iberian plate; and (v) the Messejana Plasencia dyke paleopole for the Iberian plate is also in agreement with quality-selected European and North American lower Jurassic paleopoles and the magnetic anomalies data sets that are available for rotate them to Iberia.  相似文献   

8.
To verify paleomagnetic proof for megatectonic translation in the Tethys a large collection of samples from a key area, the Bolzano Quartz Porphyry Plateau in the Southern Alps, was examined. Their natural remanent magnetization was analyzed with thermal, and mainly alternating field demagnetization. The result is a well-established paleomagnetic direction of D: 150° and I: −19.5° (95 = 4.9), obtained from 152 samples from 39 sites distributed over 12 volcanic units. It is argued that the inclination of this result is not significantly different from that which can be extrapolated for the Southern Alps from Early Permian paleomagnetic directions of the stable European shield. Consequently it is concluded that a paleomagnetic indication for megatectonic translation of the Southern Alps is virtually absent. But a large counterclockwise deviation of the declination is evident, and is easily explained by a counterclockwise rotation of 50° of the Southern Alps with respect to stable Europe. Since the paleomagnetic direction of the Early Permian volcanics of the Southern Alps fits in reasonably well with the (poorly known) Early Permian paleomagnetic pattern of Africa, a coherence between both regions is presumed.  相似文献   

9.
Northeastern Brazil is, within the present knowledge of historical and instrumental seismicity, one the most seismic active areas in intraplate South America. Seismic activity in the region has occurred mainly around the Potiguar basin. This seismicity includes earthquake swarms characterized by instrumentally-recorded events ≤ 5.2 mb and paleoseismic events ≥ 7.0. Our study concentrates in the João Câmara (JC) epicentral area, where an earthquake swarm composed of more than 40,000 aftershocks occurred mainly from 1986 to 1990 along the Samambaia fault; 14 of which had mb > 4.0 and two of which had 5.1 and 5.0 mb. We describe and compare this aftershock sequence with the present-day stress field and the tectonic fabric in an attempt to understand fault geometry and local control of seismogenic faulting. Earthquake data indicate that seismicity decreased steadily from 1986 to 1998. We selected 2,746 epicenters, which provided a high-quality and precise dataset. It indicates that the fault trends 37° azimuth, dips 76°–80° to NW, and forms an alignment  27 km long that cuts across the NNE–SSW-trending ductile Precambrian fabric. The depth of these events ranged from  1 km to  9 km. The fault forms an echelon array of three main left-bend segments: one in the northern and two in the southern part of the fault. A low-seismicity zone, which marks a contractional bend, occurs between the northern and southern segments. Focal mechanisms indicate that the area is under an E–W-oriented compression, which led to strike–slip shear along the Samambaia fault with a small normal component. The fault is at 53° to the maximum compression and is severely misoriented for reactivation under the present-day stress field. The seismicity, however, spatially coincides with a brittle fabric composed of quartz veins and silicified-fault zones. We conclude that the Samambaia fault is a discontinuous and reactivated structure marked at the surface by a well-defined brittle fabric, which is associated with silica-rich fluids.  相似文献   

10.
The northernmost part of the Kamchatka Peninsula of northeastern Russia, located along the northwestern margin of the Bering Sea, consists of zones of complexly deformed accreted terranes. Progressing from the northwestern Bering Sea inland are the Olyutorskiy, Ukelayat, and Koryak superterranes, which were accreted to the Okhotsk–Chukotsk volcanic–plutonic belt (OChVB) during the Campanian–Maastrichtian (Koryak) to Middle Eocene (Olyutorskiy), respectively. To constrain the accretion paleolatitude of the Koryak superterrane, we paleomagnetically sampled a sedimentary series on the Mametchinskiy Peninsula. At the Mametchinskiy Peninsula, in the northeastern Penzhinskaya Guba (61.45° N, 163.75° E), a gently deformed, well-bedded section of fine-grained Lower to lower Upper Cretaceous turbidites, the Mametchinskaya and Tylakrylskaya Formations are exposed. These strata, which represent the lower part of the sedimentary cover of the terranes in this region and the forearc of OChVB, were sampled at 39 sites (three to seven samples per site). Within the Ainyn terrane, more than 1000 m of section of Cenomanian–Turonian age was sampled at a basal locality (sample groups I and II, sites 1–18, 19–29) and at an upper locality of Valanginian–Barremian age (sample group III, sites 30–39) along the western shore of the Peninsula. Thermal demagnetization and principal component analysis of the demagnetization data show lower-temperature (A) and higher-temperature (B) magnetic components. Although group III samples did not display a coherent A component, the A component of group I and II samples was observed as a single-polarity lower-unblocking temperature component generally removed by 100–400 °C. This component failed the fold test at the 95% confidence level. With respect to direction, the A component is similar to both the present-day field and axial–geocentric dipole directions expected at this site. The B component was observed during thermal demagnetization steps up to 580 °C and was always of downward-directed inclination. Coherence of bedding corrections within each section do not allow statistically meaningful fold tests within groups I, II or III. Assuming the B component represents a Cretaceous magnetization, two overall models are proposed. In the first model (preferred), with the highest clustering of directions (k-value=36.7, N (sites)=36), indicates significant poleward motion of the Ainyn terrane (observed paleolatitude λM1=61.0±6.5°; expected North America plate reference site paleolatitude λE=74.0±3.5°). In the second model, no significant poleward displacement is implied (λM2=72.0±9.6).  相似文献   

11.
This paper presents a regional scale observation of metamorphic geology and mineral assemblage variations of Kontum Massif, central Vietnam, supplemented by pressure–temperature estimates and reconnaissance geochronological results. The mineral assemblage variations and thermobarometric results classify the massif into a low- to medium-temperature and relatively high-pressure northern part characterised by kyanite-bearing rocks (570–700 °C at 0.79–0.86 GPa) and a more complex southern part. The southern part can be subdivided into western and eastern regions. The western region shows very high-temperature (> 900 °C) and -pressure conditions characterised by the presence of garnet and orthopyroxene in both mafic and pelitic granulites (900–980 °C at 1.0–1.5 GPa). The eastern region contains widespread medium- to high-temperature and low-pressure rocks, with metamorphic grade increasing from north to south; epidote- or muscovite-bearing gneisses in the north (< 700–740 °C at < 0.50 GPa) to garnet-free mafic and orthopyroxene-free pelitic granulites in the south (790–920 °C at 0.63–0.84 GPa). The Permo-Triassic Sm–Nd ages (247–240 Ma) from high-temperature and -pressure granulites and recent geochronological studies suggest that the south-eastern part of Kontum Massif is composed of a Siluro-Ordovician continental fragment probably showing a low-pressure/temperature continental geothermal gradient derived from the Gondwana era with subsequent Permo-Triassic collision-related high-pressure reactivation zones.  相似文献   

12.
Ron   《Gondwana Research》2006,10(3-4):207-231
New age, petrochemical and structural data indicate that the Banda Terrane is a remnant of a Jurassic to Eocene arc–trench system that formed the eastern part of the Great Indonesian arc. The arc system rifted apart during Eocene to Miocene supra-subduction zone sea floor spreading, which dispersed ridges of Banda Terrane embedded in young oceanic crust as far south as Sumba and Timor. In Timor the Banda Terrane is well exposed as high-level thrust sheets that were detached from the edge of the Banda Sea upper plate and uplifted by collision with the passive margin of NW Australia. The thrust sheets contain a distinctive assemblage of medium grade metamorphic rocks overlain by Cretaceous to Miocene forearc basin deposits. New U/Pb age data presented here indicate igneous zircons are less than 162 Ma with a cluster of ages at 83 Ma and 35 Ma. 40Ar/39Ar plateau ages of various mineral phases from metamorphic units all cluster at between 32–38 Ma. These data yield a cooling curve that shows exhumation from around 550 °C to the surface between 36–28 Ma. After this time there is no evidence of metamorphism of the Banda Terrane, including its accretion to the edge of the Australian continental margin during the Pliocene. These data link the Banda Terrane to similar rocks and events documented throughout the eastern edge of the Sunda Shelf and the Banda Sea floor.  相似文献   

13.
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.  相似文献   

14.
Isotopic data for the Bakircay granodiorite porphyry, give a Late Eocene age for the development of the porphyry copper system. They suggest a close temporal and genetic relationship between igneous and hydrothermal activity, and indicate that magmatic-hydrothermal fluids produced potassic alteration and that meteoric fluids enriched in radiogenic87Sr were responsible for propylitic alteration. The granodiorite porphyry is petrologically similar to porphyry copper-related intrusions from island arc and continental margin settings, which form a group with initial87Sr/86Sr ratios of less than 0. 7043, representing magmas produced in tectonic environments lacking any important component of old (i. e. Precambrian) continental material.  相似文献   

15.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

16.
El Teniente porphyry copper deposit, the world’s greatest intrusion-related Cu–Mo ore body, is hosted within basaltic–andesitic volcanic and gabbroic rocks (mafic complex). This ore body is strongly affected by multiple events of alteration/mineralization with pervasive potassic and chloritic alteration and coetaneous with associated copper mineralization. We present paleomagnetic results obtained from oriented samples at four locations within the mine and from two drill cores, 200 and 400 m long, respectively. Samples are representative of all the main hydrothermally altered rock units, with emphasis on the mafic host rock and dacitic (Teniente dacite porphyry) and dioritic porphyry intrusions. Magnetic experiments [hysteresis loop, isothermal remanent magnetization (IRM), kT curves, thermal, and alternating field demagnetization] show the presence of prevailing magnetite. Microscope and SEM observations show two families of magnetite, (a) large multidomain magnetite grains, associated with biotite and chlorite of various different hydrothermal alteration events, and (b) abundant small to medium grain-size magnetite (<10 μm) contained within plagioclase, either related to an early Na–Ca–Fe alteration or included within plagioclase during magmatic crystal growth. While the Teniente dacite porphyry and the quartz diorite–tonalite have low magnetic susceptibility (<0.0005 SI) and low natural remanent magnetization (NRM, 10−4–10−3 Am−1), the mineralized mafic host rocks have usually high susceptibility (>0.01 and up to 0.2 SI) with NRM in the range 0.1–2 Am−1. Most mafic complex rock samples have univectorial magnetizations during alternating field or thermal demagnetization. Within the mine, the magnetic polarity is spatially distributed. In the northern part of the deposit, the Teniente dacite porphyry, the associated hydrothermal breccias, and the hosting mafic complex record a reverse polarity magnetization, also observed in the El Teniente sub-6 mine sector immediately to the east and southeast. In the eastern part of the deposit, a normal polarity is observed for samples of the mafic complex from the two long drill cores. There is no evidence for superimposed magnetizations of opposite polarities in samples of the mafic complex. Anhysteretic remanent magnetization (ARM) in a DC field of 40 μT and NRM have similar magnitude and comparable behavior upon alternating field demagnetization. The well-defined strong remanent magnetizations associated with high unblocking temperatures (>500°C) indicate an acquisition of remanent magnetization during mineralization by circulating high temperature fluids related with ore deposition. Paleomagnetic results and the recorded polarity zonation suggest multiple mineralization events occurred at El Teniente, each one with its own evolution stages, superimposed within the district. These results indicate that a simplified broad four-stage model for El Teniente, as presented and overly employed by many authors, divided in (1) late magmatic, (2) main hydrothermal, (3) late hydrothermal, and (4) posthumous stage, does not recognize various short-lived single mineralization events, some superimposed and some distinctly separated in time and space. There is no paleomagnetic evidence for post-mineralization deformation  相似文献   

17.
红粘土的磁学性质研究   总被引:17,自引:2,他引:17  
本文对陕西宝鸡剖面红粘土上部进行了详细的岩石磁学研究,确定了该地区红粘土的主要磁性矿物是磁铁矿。赤铁矿相对含量很少,对剩余磁性贡献较小。磁性质不稳定的磁赤铁矿存在于红粘土中,但不影响剩磁稳定性。特征剩磁载体主要是磁铁矿。磁性矿物的粒度是以准单畴为主。红粘土的短时间弛豫粘滞剩磁很强,因此在零磁空间进行退磁和剩磁测量是非常重要的。  相似文献   

18.
Mafic alkaline lavas from the Venetian Volcanic Province (NE Italy) contain orange–brown zircon megacrysts up to 15 mm long, subhedral to subrounded and showing equant morphology, with width-to-length ratios of 1:2–1:2.5. U–Pb ages of zircon (51.1 ± 1.5 to 30.5 ± 0.51 Ma) fit the stratigraphic age of the host lava (Middle Eocene and Oligocene) and their oxygen isotope composition (δ18O = 5.31–5.51‰) is similar to that of zircon formed in the upper mantle. Cathodoluminescence images and crystal chemical features, e.g. depletion of incompatible elements such as REE, Y, U and Th at constant Hf content, indicate that centre-to-edge zircon zoning is not consistent with evolution of the melt by fractional crystallization. All the above features, together with the fact that zircon and host basalts are coeval, indicate that the studied Zr megacrysts crystallised from a primitive alkaline mafic magma, which later evolved to the less alkaline host magma.  相似文献   

19.
Xenoliths collected from Prindle volcano, Alaska (Lat. 63.72°N; Long. 141.82°W) provide a unique opportunity to examine the lower crust of the northern Canadian Cordillera. The cone's pyroclastic deposits contain crustal and mantle-derived xenoliths. The crustal xenoliths include granulite facies metamorphic rocks and charnockites, comprising orthopyroxene (opx)–plagioclase (pl)–quartz (qtz) ± mesoperthite (msp) and clinopyroxene (cpx). Opx–cpx geothermometry yields equilibrium temperatures (T) from 770 to 1015 °C at 10 kbar. Pl–cpx–qtz geobarometry yields pressures (P) of  6.6–8.0 kbar. Integrated mesoperthite compositions suggest minimum temperatures of 1020–1140 °C at 10 kbar using solvus geothermometry. The absence of garnet in these rocks indicates a range of maximum pressure of 5–11.3 kbar, and calculated solidi constrain upper temperature limits. We conclude that the granulite facies assemblages represent relatively dry metamorphism at pressures indicative of crustal thicknesses similar to present day ( 36 km). Zircon separates from a single crustal xenolith yield mainly Early Tertiary (48–63 Ma) U–Pb ages which are considerably younger than the cooling ages of the high-pressure amphibolites exposed at the surface. The distribution of zircon ages is interpreted as indicating zircon growth coincident with at least two different thermal events as expressed at surface: (i) the eruption of the Late Cretaceous Carmacks Group volcanic rocks in western Yukon and adjacent parts of Alaska, and (ii) emplacement of strongly bimodal high level intrusions across much of western Yukon and eastern Alaska possibly in an extensional tectonic regime. The distributions of zircon growth ages and the preservation of higher-than-present-day (> 25 ± 3 °C km− 1) geothermal gradients in the granulite facies rocks demonstrate the use of crustal xenoliths for recovering records of past, lithospheric-scale thermal–tectonic events.  相似文献   

20.
The paleomagnetism of Upper Cretaceous magmatic rocks from 47 collecting sites (172 samples, 692 specimens) in the Apuseni Mountains was studied. After AF cleaning, characteristic magnetizations were identified for various collecting areas in the study zone, which defined a few spatial and temporal units for which paleomagnetic poles could be derived statistically. At 21 sampling sites the paleomagnetic directions showed a high level of intrasite and intersite consistency, with a mean direction of If = −38° and Df = −100°, with 95 = 6°. The paleomagnetic results show that to reach their present-day position the Apuseni Mountains moved to the north, around 14° with respect to Europe, or around 25° with respect to the geographic poles, between the Campanian and, probably, Late Miocene, while a clockwise rotation, of around 80°, was taking place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号