首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity.  相似文献   

2.
This paper describes the occurrence of dolostone and the mechanism of dolomitization of the Upper Devonian Gölbo?az? Formation in the allochthonous Taurus Mountains Alada? unit in Turkey. The Upper Devonian Gölbo?az? Formation carbonates, with dominant ostracod-bearing mudstone and wackestone, formed tidal and subtidal environments, and some of these rocks were dolomitized from shallow to deep burial. On the basis of the field, the petrographic and geochemical features, four different replaceable and cement dolostone phases have been recognized. The replacive dolostones contain (1) very fine to fine crystalline planar-s dolostone (df1), (2) medium to coarse crystalline planar-s to planar-e dolostone (df2), (3) coarse to very coarse crystalline non-planar-a dolostone (df3), and (4) coarse to very coarse crystalline planar dolostone cement (df4). The replacive dolostones are disordered to moderate the ordered and calcium-rich. They are non-stoichiometric and have 46–59 mol% CaCO3 and 41–54 mol% MgCO3 total contents. The df1 dolostones have MgCO3 contents of 41–54 mol%, the df2 dolostones have 41–53 mol%, the df3 dolostones have 49 mol%, and the df4 dolostones have 49–50 mol%, respectively. The Gölbo?az? dolostones have δ18O values of ?9.44 to ?2.20‰ Vienna Pee Dee Belemnite (VPDB) and δ13C values of ?1.58 to +2.52 VPDB. Sr, Na, Mn, and Fe concentrations of replacive dolostones are 74–184, 148–593, below detection level (bdl)–619, and 1049–9233 ppm, respectively. The petrographic and geochemical data demonstrate that the replacive dolostones occurred prior to the chemical compaction at shallow to intermediate burial depths from Late Devonian seawater and/or seawater lightly modified by water–rock interaction process and later recrystallized by basinal brines at increasing burial depths and temperature. The North American Shale Composite-normalized rare earth element values of both limestone and dolostone show very similar rare earth element patterns characterized by slightly or considerably negative cerium (Ce) anomalies and a clear depletion in all rare earth element species. The dedolomitization observed in the Gölbo?az? Formation is thought to occur by the oxidizing effect of the meteoric water in the shallow burial environment during the telodiagenesis.  相似文献   

3.
The Early to Middle Cambrian Red Heart Dolomite and lower Arthur Creek Formation of the southern portion of the Georgina Basin, Australia, is an entirely dolomitized succession of shallow-water evaporitic mudflat and deeper-water subtidal lithologies. Three types of dolomite have been identified and are interpreted as: (1) syndepositional dolomite; (2) regional replacement dolomite; and (3) void-filling dolomite (cement). Syndepositional dolomite, derived from saline pore fluids developed in a sabkha environment, is a minor dolomite type with very fine crystal mosaics and has a mottled, non-zoned cathodoluminescence. The widespread regional replacement dolomite ranges from fine- to medium-crystalline forming mainly planar-s and non-planar-a crystal mosaics, and displays blotchy, mottled, non-zoned cathodoluminescence. Void-filling dolomite commonly forms planar-s to planar-e, medium to very coarse crystal mosaics. Rare non-planar-c, very coarsely crystalline saddle dolomite also exists. Void-filling dolomite has a successively zoned cathodoluminescence pattern from non-, to brightly, to dully luminescent. Geochemically, the syndepositional dolomite has δ18O (PDB) values ranging between ? 5.3 and ? 8.6%o. Regional replacement dolomites exhibit a wide range of δ18O values from ? 3.3 to ? 10.9%o whereas void-filling dolomite has δ18O values ranging from ? 10.8 to ? 14.3%o. All three dolomite types have similar δ13C (PDB) values, in the range between +1.7 and ?1.7%o. Three initial dolomitization episodes are interpreted: (1) a sabkha stage, forming the syndepositional dolomite and dolomitizing the evaporitic mudflat lithologies; (2) a brine-reflux stage, replacing the subtidal lithologies; and (3) a burial stage, forming the void-filling dolomite type. Final dolomite stabilization occurred during burial, at elevated temperatures, in the presence of basinal fluids, resulting in progressive recrystallization and stabilization of the earlier-formed syndepositional and replacement dolomites. Both textural and geochemical evolution should be taken into account when studying the origin of dolomites, based on their present geochemical composition. Sulphates are represented by very fine-crystalline syndepositional anhydrite in association with the syndepositional dolomite, and coarse to very coarse anhydrite cement. Evaportic mudflat (sabkha) and burial environments are inferred for the origin of the former and the latter anhydrite types, respectively. Evaporite dissolution breccias, indicative of the former presence of evaporites, are common throughout the succession.  相似文献   

4.
The Late Jurassic-early Senonian Cehennemdere Formation extending in an E-W direction in a wide area at the south of the Bolkar Mountains (Central Taurides, Turkey) is composed of platform carbonates. The formation was deposited in an environment that was being transformed from a shallow carbonate platform to an open shelf and a continental slope, and was buried until late Paleocene uplift. The formation, with a thickness of about 360 m, was chiefly developed as textures consisting of mudstone and wackestone and has been commonly dolomitized. Based on petrographic and geochemical properties, four types of replacement dolomites and two types of dolomite cements were distinguished. Replacement dolomite (RD), which is cut by low-amplitude stylolites developed as (1) fine crystalline planar-s dolomite (RD1); (2) medium crystalline planar-s dolomite (RD2); (3) medium-coarse crystalline planar-e dolomite (RD3) and; (4) coarse crystalline planar-s (e) dolomite (RD4). Two types of dolomite cements (CD) observed in low abundance and overlie low-amplitude stylolites: (1) coarse crystalline dolomite cement (CD1) filling dissolution voids and fractures in RD1 dolomites, and; (2) rim dolomite cement (CD2) that commonly develops on the space-facing surfaces of RD4 dolomite. Replacement dolomites are non-stoichiometric (Ca54–59Mg41–46), have similar geochemical properties, and are generally dull red/non luminescent in appearance. Replacement dolomite is represented by δ18O values from −4.5 to −0.5‰ VPDB, δ13C values of −0.7 to 2.7‰ VPDB, and 87Sr/86Sr ratios ranging from 0.707178 to 0.707692. Petrographic and geochemical data indicate that replacement dolomite (particularly RD2, RD3, and RD4 dolomite) was formed at shallow-intermediate burial depths during the Late Jurassic-Early Cretaceous, from seawater and/or from slightly modified seawater. The replacement dolomite (RD) was then recrystallized at increased burial depths and temperatures. Dolomite cements are similar to replacement dolomites in that they are non-stoichiometric (Ca55Mg45) and have similar trace element compositions. CD1 dolomite, which cuts low-amplitude stylolites, was formed during intermediate to deep burial following stylolite development. CD2 dolomite was precipitated in intercrystal pores in association with RD4 dolomite. Remaining pore space was filled with bitumen.  相似文献   

5.
Limestone consisting of finely to medium crystalline calcite mosaics is present in the upper part of the Winnipegosis Formation on the east‐central margin of the Elk Point Basin where the overlying Prairie Evaporite deposits have been removed. This type of crystalline limestone is interpreted as dedolomite, based on petrographic observations. The δ18O and δ13C values of the Winnipegosis dedolomite vary from ?12·8‰ to ?11·9‰ VPDB (Vienna Pee Dee Belemnite) and from ?0·5‰ to +1·7‰ VPDB, respectively; both values are significantly lower than those for the corresponding dolomite. The 87Sr/86Sr ratios of the dedolomite are significantly higher, between 0·7082 and 0·7087. The spatial distribution and geochemical data of the Winnipegosis dedolomite suggest that dedolomitization was related to an influx of fresh groundwater and dissolution of the Prairie Evaporite anhydrite during the latest Mississippian to the Early Cretaceous when the basin was subjected to uplift and erosion. The Winnipegosis dedolomite displays a series of replacement fabrics showing progressive calcitization of dolomite, including the occurrence of dedolomite restricted along fractures and adjacent areas, dolomite patches ‘floating’ in the dedolomite masses and massive dedolomite with sparsely scattered dolomite relicts. However, the characteristic fabrics resulting from dedolomitization documented in the literature have not been observed in the Winnipegosis dedolomite. Coarsely to very coarsely crystalline, subhedral to euhedral calcite cement is restricted in the dedolomite. The petrographic features, isotopic compositions and homogenization temperatures, coupled with the burial history of the Winnipegosis Formation, constrain the precipitation of the calcite cement from a mixing of basinal brines and fresh groundwater during Late Cretaceous to Neogene time. The more negative C‐isotopic signatures of the calcite cement (?5·3‰ to ?2·3‰ VPDB) probably reflect a hydrocarbon‐derived carbon.  相似文献   

6.
Fault-controlled hydrothermal dolomitization in tectonically complex basins can occur at any depth and from different fluid compositions, including ‘deep-seated’, ‘crustal’ or ‘basinal’ brines. Nevertheless, many studies have failed to identify the actual source of these fluids, resulting in a gap in our knowledge on the likely source of magnesium of hydrothermal dolomitization. With development of new concepts in hydrothermal dolomitization, the study aims in particular to test the hypothesis that dolomitizing fluids were sourced from either seawater, ultramafic carbonation or a mixture between the two by utilizing the Cambrian Mount Whyte Formation as an example. Here, the large-scale dolostone bodies are fabric-destructive with a range of crystal fabrics, including euhedral replacement (RD1) and anhedral replacement (RD2). Since dolomite is cross-cut by low amplitude stylolites, dolomitization is interpreted to have occurred shortly after deposition, at a very shallow depth (<1 km). At this time, there would have been sufficient porosity in the mudstones for extensive dolomitization to occur, and the necessary high heat flows and faulting associated with Cambrian rifting to transfer hot brines into the near surface. While the δ18Owater and 87Sr/86Sr ratios values of RD1 are comparable with Cambrian seawater, RD2 shows higher values in both parameters. Therefore, although aspects of the fluid geochemistry are consistent with dolomitization from seawater, very high fluid temperature and salinity could be suggestive of mixing with another, hydrothermal fluid. The very hot temperature, positive Eu anomaly, enriched metal concentrations, and cogenetic relation with quartz could indicate that hot brines were at least partially sourced from ultramafic rocks, potentially as a result of interaction between the underlying Proterozoic serpentinites and CO2-rich fluids. This study highlights that large-scale hydrothermal dolostone bodies can form at shallow burial depths via mixing during fluid pulses, providing a potential explanation for the mass balance problem often associated with their genesis.  相似文献   

7.
This paper describes the occurrence of dolomite and the mechanism of dolomitization of the Upper Triassic-Lower Jurassic K?z?loren Formation in the autochthonous Bolkardag? unit of the middle Taurus Mountains in south western Turkey. Dolomites were analyzed for geochemical, isotopic and crystallographic variation. Dolomites occur as a replacement of precursor carbonate and cement. The dolomite crystals range from <10 to ~1000 μm existing as both replacements and cements. Sr concentrations range between 84 and 156 ppm, and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 0.0066 to 0.013 ratios. Dolomites are Ca-rich (with average CaCO3 and MgCO3 equal to 56.43 and 43.57 mol%, respectively) and they are non-stoichiometric, with an average Sr=116 ppm, Na=286 ppm, Mn=81 ppm, Fe=1329 ppm, and δ18O and δ13C ranges from –0.6‰ to –6.1‰ Pee Dee Belemnite [PDB], and +1.2 to +3.9‰ PDB. The North American Shale Composition [NASC]-normalized rare earth element (REE) values of the both limestone and dolomite sample groups show very similar REE patterns characterized by small positive Eu (mean=1.32 and mean=1.42, respectively) and slightly or considerably negative Ce (mean=0.61 and mean=0.72, respectively) anomalies and a clear depletion in all REE species. The K?z?loren Formation dolomites have been formed as early diagenetic from mixing zone fluids at the tidal-subtidal environment and at the late diagenetic from basinal brines at the shallow-deep burial depths.  相似文献   

8.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

9.
研究了南京汤山观音台组顶部、仑山组和红花园组底部的微量元素、稀土元素和碳、氧同位素,基于观音台组顶部白云岩中白云石和方解石δ~(18)O 值的相似性,认为它是在成岩作用初期由交代作用形成的准同生白云岩。依据同位素分析,所研究层段的碳酸盐岩主要形成于埋藏成岩环境,未经历大气淡化成岩阶段。依据地层多重划分概念修订了观音台组和仑山组的界线。依据碳同位素与有关地区对比探讨了寒武系与奥陶系界线,界线附近δ~(13)C 值仅见小的负偏移,反映这一时期海平面的升降幅度较小。  相似文献   

10.
HAIRUO Qing 《Sedimentology》1998,45(2):433-446
The petrography and geochemistry of fine- and medium-crystalline dolomites of the Middle Devonian Presqu’ile barrier at Pine Point (Western Canada Sedimentary Basin) are different from those of previously published coarse-crystalline and saddle dolomites that are associated with late-stage hydrothermal fluids. Fine-crystalline dolomite consists of subhedral to euhedral crystals, ranging from 5 to 25 μm (mean 8 μm). The dolomite interbedded with evaporitic anhydrites that occur in the back-barrier facies in the Elk Point Basin. Fine-crystalline dolomite has δ18Ο values between ?1·6 to –3·8‰ PDB and 87Sr/86Sr ratios from 0·7079–0·7081, consistent with derivation from Middle Devonian seawater. Its Sr concentrations (55–225 p.p.m., mean 105 p.p.m.) follow a similar trend to modern Little Bahama seawater dolomites. Its rare earth element (REE) patterns are similar to those of the limestone precursors. These data suggest that this fine-crystalline dolomite formed from Middle Devonian seawater at or just below the sea floor. Medium-crystalline dolomite in the Presqu’ile barrier is composed of anhedral to subhedral crystals (150–250 μm, mean 200 μm), some of which have clear rims toward the pore centres. This dolomite occurs mostly in the southern lower part of the barrier. Medium-crystalline dolomite has δ18O values between ?3·7 to ?9·4‰ PDB (mean ?5·9‰ PDB) and 87Sr/86Sr ratios from 0·7081–0·7087 (mean 0·7084); Sr concentrations from 30 to 79 p.p.m. (mean 50 p.p.m.) and Mn content from 50 to 253 p.p.m. (mean 161 p.p.m.); and negative Ce anomalies compared with those of marine limestones. The medium-crystalline dolomite may have formed either (1) during shallow burial at slightly elevated temperatures (35–40 °C) from fluids derived from burial compaction, or, more likely (2) soon after deposition of the precursor sediments by Middle Devonian seawater derived from the Elk Point Basin. These results indicate that dolomitization in the Middle Devonian Presqu’ile barrier occurred in at least two stages during evolution of the Western Canada Sedimentary Basin. The geochemistry of earlier formed dolomites may have been modified if the earlier formed dolomites were porous and permeable and water/rock ratios were large during neomorphism.  相似文献   

11.
In the Tarim Basin of northwestern China hydrocarbon deposits have been discovered in parts of the thick strata of Cambrian dolostones. Based on petrographic study, six types of dolostone have been distinguished: Type-1, pink mud-bearing silty crystalline dolostone (PMSD); Type-2, gypsum- and salt-bearing fine crystalline dolostone (GSFD); Type-3, fine crystalline dolostone with dolomite crystals with cloudy core and clear rim (CCFD); Type-4, deep gray mud-bearing silty crystalline dolostone (GMSD); Type-5, euhedral coarse crystalline dolostone (ECD); and Type-6, xenotopic coarse crystalline dolostone (XCD). Applying petrographic and geochemical methods, the genesis of the dolostones is studied in this paper. Normally, Type-1 dolostone shows U- and Mo-depleted characteristics, reflecting a more oxidized formation environment; High δ18O and the purple color are consistent with formation of Sabkha dolostones on a supratidal flat. Types 2, 3, 4 dolostones show strata formation, similar REE patterns and 87Sr/86Sr ratios with contemporaneous limestones, suggesting a penecontemporaneous origin from seawater. Types 5 and 6 dolostones commonly occur as interbedded rocks, indicating secondary genesis after diagenesis. Type-6 dolostone has the highest order degree (OD) values (average 0.86), the lowest oxygen isotope values and positive Eu anomalies, which are consistent with previously reported hydrothermal dolostones. Differently, Type-5 shows euhedral texture, higher δ18O value, similar REE characteristic and 87Sr/86Sr ratios in comparison with contemporaneous limestones, suggesting that this type might have been dolomitized by down-transferring evaporated seawater during shallow burial stage. Dolostone fluid sources, formation environments and crystallizing dynamics are summarized and possible genetic models for the six types are proposed.  相似文献   

12.
四川盆地东南地区林1井灯影组鞍形白云石成因及其意义   总被引:1,自引:0,他引:1  
对四川盆地东南地区林1井上震旦统灯影组鞍形白云石的岩相学特征和碳、氧、锶同位素特征及流体包裹体成分与温度进行研究,认为它属热液成因。研究区热液活动在岩相学上表现为充填状鞍形白云石,发育鞍形白云石线状充填晶洞。鞍形白云石共生矿物包括石英、沥青等。鞍形白云石δ18O值和δ13C值异常偏负,87Sr/86Sr值异常偏高,与围岩差异明显。鞍形白云石原生流体包裹体均一温度为270~320℃,明显超过了该井最高埋藏温度;流体包裹体的气相部分以CO2、CH4和N2为主,液相部分以H2O和CO2为主。这些特征表明,形成鞍形白云石的流体来自于基底的热液,灯影组白云岩受热液溶蚀改造而发育热液改造型白云岩储层,并有过油气成藏过程。  相似文献   

13.
Late Miocene platform carbonates from Nijar, Spain, have been extensively dolomitized. Limestones are present in the most landward parts of the platform, in stratigraphically lower units and topographically highest outcrops, suggesting that dolomitizing fluids were derived from the adjacent Nijar Basin. The dolomite crystals range from <10 to ≈100 μm existing as both replacements and cements. Na, Cl and SO4 concentrations in the dolomites range from 200 to 1700 p.p.m., 250–650 p.p.m., and 600–7000 p.p.m., respectively, comparable with other Tertiary and modern brine dolomite values, and also overlapping values from mixing-zone dolomites. Sr concentrations range between 50 and 300 p.p.m., and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 7× seawater brine to freshwater ratios. The δ18O and δ13C of the dolomites range from ?1·0 to +4·2‰ PDB, and ?4·0 to +2·0‰ PDB, respectively. 87Sr/86Sr values (0·70899–0·70928) of the dolomites range from late Miocene seawater to values greater than modern seawater. Mixtures of freshwater with seawater and evaporative brines probably precipitated the Nijar dolomites. Modelled covariations of molar Sr/Ca vs. δ18O and Na/Ca vs. δ18O from these mixtures are consistent with those of the proposed Nijar dolomitizing fluids. Complete or partial dolomite recrystallization is ruled out by well preserved CL zoning, nonstoichiometry and quantitative water–rock interaction modelling of covariations of Na vs. Sr and δ18O vs. δ13C. The possibility of multiple dolomitization events induced by evaporative brines, seawater and freshwater, respectively, is consistent with mineral-mineral mixing modelling. The basin-derived dolomitizing brines probably mixed with freshwater in the Nijar Basin or mixed with fresh groundwater in the platform, and were genetically related either to deposition of the Yesares gypsum or the Feos gypsum. Dolomitization occurred during either the middle Messinian or the early upper Messinian. Nijar dolomitization models may be applicable to dolomitization of other late Miocene platform carbonates of the western Mediterranean. Moreover, the Nijar models may offer an analogue for more ancient evaporite-absent platform carbonates fringing evaporite basins.  相似文献   

14.
Cambrian dolostone reservoirs in the Tarim Basin, China, have significant potential for future discoveries of petroleum, although exploration and production planning is hampered by limited understanding of the occurrence and distribution of dolomite in such ancient rocks buried to nearly 8 km. The study herein accessed new drill core samples which provide an opportunity to understand the dolomitization process in deep basins and its impact on Cambrian carbonate reservoirs. This study documents the origin of the dolostone reservoirs using a combination of petrology, fluid‐inclusion microthermometry, and stable and radiogenic‐isotopes of outcrop and core samples. An initial microbial dolomitization event occurred in restricted lagoon environments and is characterized by depleted δ13C values. Dolomicrite from lagoonal and sabkha facies, some fabric‐retentive dolomite and fabric‐obliterative dolomite in the peloidal shoal and reef facies show the highest δ18O values. These dolomites represent relatively early reflux dolomitization. The local occurrence of K‐feldspar in dolomicrite indicates that some radiogenic strontium was contributed via terrigenous input. Most fabric‐retentive dolomite may have precipitated from seawater at slightly elevated temperatures, suggested by petrological and isotopic data. Most fabric‐obliterative dolomite, and medium to coarse dolomite cement, formed between 90°C and 130°C from marine evaporitic brine. Saddle dolomite formed by hydrothermal dolomitization at temperatures up to 170°C, and involved the mixing of connate brines with Sr‐ enriched hydrothermal fluids. Intercrystalline, moldic, and breccia porosities are due to the early stages of dolomitization. Macroscopic, intergranular, vuggy, fracture and dissolution porosity are due to burial‐related dissolution and regional hydrothermal events. This work has shown that old (for example, Cambrian or even Precambrian) sucrosic dolomite with associated anhydrite, buried to as much as 8000 m, can still have a high potential for hosting substantial hydrocarbon resources and should be globally targeted for future exploration.  相似文献   

15.
Middle to Late Ordovician subtidal carbonates in the Manitoulin Island area of Ontario are predominantly limestone in composition, but non-ferroan and ferroan dolomite is a common cement as well as a selective or locally pervasive replacement phase. Integration of field, petrographic, geochemical (δ13C, δ18O) and fluid inclusion data indicates that lithification of these carbonates occurred during burial diagenesis, with much of the alteration controlled by regional fracturing and hydrothermal influences. Aqueous (type 1) fluid inclusions in early calcite (pre-dolomite) and dolomite are saline (> 29 wt% NaCl eq.) solutions with Ca and/or Mg in excess of Na and display homogenization temperatures with modes of 95 and 101°C, respectively. These temperatures can be explained by significantly more burial than can be accounted for either by the available stratigraphic information or by an unusually high palaeogeothermal gradient, which also is not well supported. The fluid inclusion temperatures are interpreted to have resulted from hydrothermal fluids which circulated during the burial diagenesis of these strata. Type 1 inclusions in late (post-dolomite) calcite are less saline (<19 wt% NaCl eq.) and have a bimodal distribution of homogenization temperatures with a relatively well defined low temperature peak similar to those in early calcite and dolomite and a broad higher temperature grouping with a mode at 183°C. A small proportion of methane and light hydrocarbon-bearing fluid inclusions (type 2) are present in all stages of carbonate. Dolomitizing fluids were derived from burial compaction of argillaceous sediments in the more central parts of the Michigan Basin and the updip migration of these brines along fractures to the basin margin where the carbonates of the Manitoulin Island area were dolomitized. Alternatively, migration of dolomitizing brines downward from the overlying pervasively dolomitized Silurian sequence into fractures in the Ordovician carbonates may have occurred. Integration of the aqueous fluid inclusion data into the diagenetic history of these carbonates remains equivocal because most of the inclusions are secondary or indeterminate in origin. Nevertheless, high salinities resulting from interaction with evaporitic strata and hydrothermal effects are clearly implicated although the origin of the latter remains unclear. The alteration styles of the Ordovician carbonates in the Manitoulin area are similar to those of Ordovician hydrocarbon reservoirs described from other parts of the Michigan Basin. They indicate that fracture-related diagenesis occurred on a basin-wide scale and that hydrothermal effects were important.  相似文献   

16.
The age of the Katera Group, which occupies a large area in the western North Muya Range and occurs 100–150 km east of the Uakit Group, is a debatable issue. Based on geological correlations with reference sections of the Baikal Group and Patom Complex, the Katera and Uakit groups were previously considered nearly coeval units and assigned to Late Precambrian (Khomentovskii and Postnikov, 2002; Salop, 1964). This was supported partly by the Sm–Nd model datings (Rytsk et al., 2007, 2009, 2011). Finds of the Paleozoic flora substantiated the revision of age of the Uakit Group and its assignment to the Late Devonian–Early Carboniferous (Gordienko et al., 2010; Minina, 2003, 2012, 2014). We have established that Sr and C isotopic compositions in carbonates of these groups differ drastically, as suggested by their different ages. Sediments of the Nyandoni Formation (Katera Group), which contains carbonates characterized by minimum values of 87Sr/86Sr = 0.7056 and maximum values of δ13C = 4.9‰, were accumulated in the first half of Late Riphean (800–850 Ma ago), whereas the overlying Barguzin Formation (87Sr/86Srmin = 0.70715, δ13Cmax= 10.5‰) was deposited at the end of Late Riphean (700–750 Ma). Judging from the isotope data, the Nerunda Formation (Uakit Group), which contains carbonates with characteristics matching the most rigorous criteria of fitness for the chemostratigraphic correlation (Sr content up to 4390 μg/g, Mn/Sr < 0.1, δ18O = 23.0 ± 1.8‰), was deposited at the end of Vendian ~550–540 Ma ago). The sequence includes thick typical carbonate horizons with very contrast carbon isotopic compositions: the lower unit has anomalous high δ13C values (5.8 ± 1.0‰); the upper unit, by anomalous low δ13C values (–5.2 ± 0.5‰]). Their Sr isotopic composition is relatively homogeneous (87Sr/86Sr = 0.7084 ± 0.0001) that is typical of the Late Vendian ocean. The S isotopic composition of pyrites from the Nyandoni Formation (Katera Group) (δ34S = 14.1 ± 6.8‰) and pyrites from the Mukhtunny Formation (Uakit Group) (δ34S = 0.7 ± 1.4‰) does not contradict the C and Sr isotopic stratigraphic data.  相似文献   

17.
塔里木盆地寒武-奥陶系白云岩储层类型与分布特征   总被引:6,自引:3,他引:3  
塔里木盆地寒武-奥陶系白云岩是台盆区最重要的储层之一,发育4种类型:①潮坪白云岩。以含膏泥晶白云岩为主,石膏溶孔及白云岩砾间孔发育,发育于潮间-潮上坪蒸发环境。白云石表现为MgO-CaO呈线性正相关、低Mg/Ca值及高∑REE值、锶同位素值分布在0.7085~0.7100之间,略高于同期海水值0.7090、阴极发光不发光或暗色光。储层分布主要受沉积相控制,发育于中下寒武统地层;②蒸发台地白云岩。以藻丘及颗粒灰岩选择性白云石化为特征,发育铸模孔、膏溶孔和残留粒间孔,白云石Mg/Ca值变化范围大、δ13C、δ18O值相对偏正、分别大于2‰和-4‰、阴极发光发较亮红光。储层主要发育于台内靠近台缘一侧;③埋藏白云岩。发育细晶、中晶及粗晶白云岩,以晶间孔及晶间溶孔为主,δ18O值偏负在-5‰~-10‰(PDB)之间,87Sr/86Sr值相对较大,为0.7090~0.7110,阴极发光以发暗棕褐色、紫色光为主。埋藏白云岩储层发育主要受成岩相控制,但也表现出与沉积相具有相关性,这是因为物性好的台缘、台内礁滩体及有裂缝沟通构成的开放体系更有利于埋藏白云石化作用发生;④热液白云岩。以受热液改造的结晶白云岩为特征,往往伴生热液矿物,白云石δ18O值异常偏负、一般小于-9‰(PDB)、阴极发光多发明亮红光、稀土元素标准化配分曲线中Eu出现正异常、出现高于地层背景值的异常高温包裹体;主要发育在具有上覆隔挡层的不整合面之下地层及大断裂发育带附近。上述四类白云岩在规模与分布上有不同,但都可预测。埋藏和热液白云岩规模较大,受原始沉积相带和成岩流体来源双重约束。潮坪和蒸发台地白云岩规模可变性较大,可由沉积环境重建,结合成岩相研究预测评价。  相似文献   

18.
Most vein minerals deposited in fractures of the Jialingjiang Formation from Libixia section,Hechan area include a large amount of saddle dolomite and accompanying celestite,calcite and fluorite.This study analyzed the nature,source,evolution of the fluids by plane-light petrography,fluid-inclusion methods,cathodoluminescence images,and stable isotopic compositions.The homogenization temperatures of two-phase aqueous fluid inclusions in dolomite range between100 and 270℃.Combined with theδ~(18)O data,it is suggested that the fluid responsible for the precipitation of fracture fillings haveδ~(18)O values between 10‰and 18‰(relative to SMOW).The saddle dolomite and the accompanying minerals were the result of activity of dense brines at elevated temperatures.Moreover,analysis shows that the fluid was derived from a mixture of marine-derived brine and deeper circulating flow.This fluid was enriched in Sr during diagenesis and formed celestite in fracture and for regional mineralization.Dissolution of saddle dolomite was attributed to the cooling of Mg/Ca-decreased fluids,which may relate to a leaching of gypsum to celestite in surrounding carbonates.  相似文献   

19.
Detailed petrographic analyses along a depositional transect from a carbonate platform to shale basin reveals that dolomite is the principal burial diagenctic mineral in the Maryville Limestone. This study examines the role of burial dolomitization of subtidal carbonates. Dolomite occurs as a replacement of precursor carbonate and as inter- and intraparticle cements. Four different types of dolomite are identified based on detailed petrographic and gcochemical analyses. Type I dolomite occurs as small, irregular disseminations typically within mud-rich facies.Type II dolomite typically occurs as inclusions of planar euhedral rhombs (ferroan), 5–300 μm in size, in blocky clear ferroan calcite (meteoric) spar. Type II dolomite is non-luminescent. Type I and II dolomite formed during shallow to intermediate burial diagenesis. Type III dolomite consists of subhedral to anhedral crystals 10–150 μm in size occurring as thin seams along stylolites and as thick bands a few millimetres in width. This dolomite consists of dominantly non-luminescent rhombs and, less commonly, orange luminescent and zoned rhombs. Type IV dolomite consists of baroque or saddle-shaped, 100–1500 μm crystals, and is non-luminescent. Type IV dolomite formed during the period of maximum burial. Types III and IV dolomite increase in abundance downslope. Type III dolomite contains 1.2–2.6 wt% Fe and a maximum of 1000 ppm Mn. The distribution of these elements displays no distinct vertical or lateral trends. In contrast, Fe and Mn distributions in Type IV dolomite exhibit distinct spatial trends, decreasing from 3.5–4.5 wl% Fe and 0.1–0.3 wt% Mn in the west (slope/basin) to 1.5–2.5 wt% Fe and less than 600 ppm Mn in the east (shelf margin), a distance of approximately 60 km. Spatial trends in Fe and Mn distributions in Type IV saddle dolomite, suggest a west-east fluid flow during late burial diagenesis. Types III and IV dolomite have a mean δ18O value of - 7.8%00 and a mean δ13C value of + 1.1%00 (relative to the PDB standard). Based on a range of assumed basinal water composition of 2.8%00 SMOW, temperatures calculated from δ18O values of Types III and IV dolomite range between 75 and 160°C. 87Sr/86Sr data for Types III and IV dolomite range from 0.7111 to 0.7139. These values are radiogenic when compared to Cambrian marine values and are consistent with the presence of a diagenetic fluid that interacted with siliciclastic sediments. The distribution of Palaeozoic facies in the southern Appalachians indicates a Cambrian shale source for the fluids, whilst burial curves suggest a Middle Ordovician age for burial fluid movement.  相似文献   

20.

This study uses carbon isotope chemostratigraphy to propose an age for the Success Creek Group and Crimson Creek Formation in the absence of any direct radiometric dates, palaeomagnetic or reliable palaeontological data. The δ13C values were determined for the least‐altered dolomite samples. Suitable samples were selected on the basis of grainsize, cathodoluminescence petrography, most enriched δ18O values (> 2%o) low Mn/Sr ratios and low Fe and Mn concentrations. The average least‐altered, most 13C‐enriched dolomicrite samples in the youngest (No. 1) dolomite horizon are + 4.6%o. This is typical of Neoproterozoic (but not Cambrian) carbonates. The δ13C values of all dolomite samples in the succession are significantly positive (up to + 7.5%o) and the excursion characteristic of the Proterozoic/Cambrian boundary has not been observed. The lack of negative δ13C values in all dolomite samples studied also suggests an absence of correlatives of Sturtian and Varanger tillites in the dolomite successions. The δ13C values in all three dolomite horizons suggest a Neoproterozoic age between about 820 to 570 Ma (Cryogenian to Neoproterozoic III) on the current global compilation carbon isotope curves. This age for the Success Creek Group and Crimson Creek Formation, inferred from carbon isotope chemostratigraphy, can be substantiated by other evidence. The age of the Renison dolomites is constrained by K‐Ar dates of 708 ± 6 Ma from detrital muscovite in the underlying Oonah Formation and 588 ± 8 and 600 ± 8 Ma from doleritic rock in a lithostratigraphic equivalent of the Crimson Creek Formation from the Smithton Basin. Furthermore, acritarchs and the stromatolite Baicalia cf. B. burra also suggest a Neoproterozoic rather than Cambrian age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号