首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precious-metal mineralization in the southern Apuseni Mountains of western Romania is hosted by mid-Miocene (∼14 Ma) andesitic stocks and lava flows. The mineralized veins are surrounded by aureoles of hydrothermal alteration, consisting of quartz, sericite, K-feldspar, pyrite and calcite. The alteration process caused a total homogenization of initial 87Sr/86Sr in the rocks. Ages determined for the hydrothermal alteration are 13.7–15.7 Ma, indicating that hydrothermal alteration immediately followed igneous activity. Furthermore, a large influx of radiogenic Sr took place during alteration, this Sr probably being derived from the hydrothermal leaching of continental meta-sedimentary rocks in the basement. Received: 5 December 1997 / Accepted: 26 February 1998  相似文献   

2.
Initial 87Sr/86Sr rations were determined for more than 80 plutonic rocks in Japan. The 87Sr/86Sr ratios of gabbroic and granitic rocks show no significant difference in plutonic terranes where both rocks occur closely associated, implying a genetic relationship between them (e.g., Green Tuff belt) or reequilibration at deep level (e.g., Ryoke belt). Wherever granitic rocks occur independently from gabbroic rocks, the granites have higher ratios than the gabbros.Initial 87Sr/86Sr ratios of the granitic rocks are low (<0.706) in Northeast Japan but high (<0.706) in Southwest Japan, the boundary being the Tanakura Tectonic Line. Within Southwest Japan, the ratios are low along the Japan Sea side of the southernmost area. This regional variation is generally correlated with thickness of the continental crust as deduced from the Bouguer anomaly.Initial 87Sr/86Sr ratios of the granitic rocks vary from 0.7037 to 0.7124. The low group (<0.706) is considered to consist of essentially mantle-derived magmas contaminated by crustal material in lesser but varying degree, because of its geological setting and initial 87Sr/86Sr values. The high group may have been formed by contamination of a deep-seated magmas by crustal material or by generation of the main part of the magmas within the continental crust. The ratios of individual belts reflect their own history depending upon age and Rb/Sr ratio of the crustal material.Initial 87Sr/86Sr ratios of granitic rocks are generally low for the magnetite-series but high for the ilmenite-series. Thus, a negative correlation is observed between initial ratios and 34S for most Cretaceous-Paleogene granites. However, Neogene ilmenite-series granites are low in both initial 87Sr/86Sr and 34S indicating interaction of the granitic magma with young sedimentary rocks enriched in 32S.  相似文献   

3.
安徽伏川蛇绿岩套的Nd-Sr-O同位素研究   总被引:13,自引:1,他引:13       下载免费PDF全文
安徽歙县伏川的蛇绿岩套形成于中-晚元古宙,其Nd、Sr和O同位素组成是:εNd(T)=+0.7-+3.8,εSr(T)=+30.7-+53.9,δ18O=3.2-11.0‰。据地质学和同位素地球化学特征,该岩套位于杨子板块南缘、江南古岛弧的弧后小洋盆地轴部。εNd(T)值的变化是由于蛇绿岩形成过程中受到下伏不成熟硅铝质基底地壳的混染引起的;εSr(T)和δ18O的变化,是在蛇绿岩形成时或形成后不久遭受海水热液蚀变的结果。  相似文献   

4.
Late-crystallised interstitial alkali feldspars and a single epidote from selected Proterozoic dolerites in Sweden have higher initital 87Sr/86Sr ratios, (e.g., 0.709) than the early-crystallised minerals of the same rocks ( 0.704); anomalies in Rb and Sr concentrations are also noted. This radiogenically-enriched Sr must originate in the older host rocks of the intrusions. As the contaminated phases often occupy <1 % of the dolerite, only an aqueous fluid would have been capable of transporting the contamination through the 99% solid intrusions. Textural association of late feldspars with hydrous alteration products supports this interpretation. Feldspar structural data suggest that most dolerites have been affected by subsolidus aqueous fluids, causing extensive structural re-equilibration in interstitial K-feldspars, as well as occasional metasomatic effects. Anomalies in 87Sr developed only where the fluids interacted with host rocks.  相似文献   

5.
Nd and Sr isotope analyses are presented for gangue mineral samples from the giant carbonate-hosted Navan Zn–Pb deposit, Ireland, and for rocks from which Navan metals may have been derived. Analysis of gangue minerals spanning the Navan paragenetic sequence reveals systematic evolution in the composition of the mineralising fluid. Early fluid represented by replacive dolomite exhibits the lowest initial 87Sr/86Sr ratio (0.7083–0.7086), closest to that of the host limestone and to Lower Carboniferous seawater, and the highest 143Nd/144Nd ratio (0.51161–0.51176). Later generations of dolomite, barite and calcite, which encompass sulphide precipitation, have higher initial 87Sr/86Sr ratios (maximum 0.7105) and lower initial 143Nd/144Nd ratios (minimum 0.51157). All samples have initial Nd isotope ratios that are too low to have been acquired only from the host limestone. Drill core samples of presumed Ordovician volcanic and sedimentary rocks from beneath the Navan orebody have 143Nd/144Nd and 87Sr/86Sr ratios at the time of mineralisation of 0.51184–0.51217 and 0.7086–0.7138, respectively. The data are interpreted to indicate mixing of sulphide-rich, limestone-buffered brine, with a metal-bearing hydrothermal fluid, which had passed through sub-Carboniferous rocks, consistent with published fluid inclusion and S isotope data. The 143Nd/144Nd ratio of this basement-derived fluid is too low to have been imparted by flow through the Devonian Old Red Sandstone, as required in models of regional fluid flow in response to Hercynian uplift. Irrespective of whether such regional fluid flow occurred, the hydrothermal Nd must have been derived from sub-Devonian rocks. These conclusions broadly support the hydrothermal convection cell model in which brines, ultimately of surface origin, penetrated to a depth of several kilometres, leaching metals from the rocks through which they passed. The data also support increasing depth of penetration of convection cells with time. Metals were subsequently precipitated in carbonate rocks at sites of mixing with cooler, sulphide-rich fluids. However, comparison of the Navan hydrothermal gangue Nd–Sr isotope data with data from Lower Palaeozoic rocks strongly suggests that the latter cannot alone account for the “basement” signature. As the Navan deposit lies immediately north of the Iapetus Suture, this suggests that the Laurentian margin includes Precambrian basement.  相似文献   

6.
Metasomatic and Sr-isotopic changes, associated with formation of zoned alteration halos along hydrothermal veins, are documented for a gneiss from the Artenberg quarry near Steinach (Kinzigtal, Schwarzwald, SW Germany). Veins are postorogenic, SW-NE-oriented, and cut straight through metaquartzdioritic Variscan gneiss, where flow of low-temperature fluids (~100–200°C) caused adularia-quartz-sericite-type alteration. Fluid-rock interaction occurred nearly 50 Ma after Variscan metamorphism, as constrained by a Rb–Sr multimineral isochron for unaltered gneiss of 327.1?±?3.1 Ma, and by two independent ages of 279.2?±?3.1 Ma and 274?±?13 Ma, based on Rb–Sr systematics of late-stage quartz from the veins. In a profile from unaltered gneiss towards a vein, alteration-induced mineralogical changes correlate with metasomatic net addition of K, Rb, and Cl to the alteration zone, combined with net loss of Na, Ca, and Sr. Strontium isotopes give a more detailed insight into the fluid-rock interaction process. 87Sr/86Sr ratios in a profile across the alteration zone are incompatible with simple Sr leaching but reflect partial replacement of the rocks’ Sr by fluid-derived Sr, the isotopic composition of which varied with time. Early fluids, with high 87Sr/86Sr ratios compared to unaltered gneiss, evolved into fluids with somewhat lower ratios, and finally reached a second maximum in 87Sr/86Sr ratios. This Sr-isotopic fluid evolution is equally revealed by the mineral sequence of the vein mineralization. It appears that the compositional evolution of the fluids correlates with the sequence of mineral breakdown reactions in the gneissic host rock, and that the Sr-isotopic evolution of the fluids can be fully explained as the result of internal, progressive reaction of fluid with the local rocks. Results also show that the spatial distributions of Sr isotopes in metasomatic alteration zones may reflect the complex evolution of fluid-rock interaction systems, and ultimately constrain the factors controlling both fluid compositions and alteration patterns.  相似文献   

7.
Rb–Sr systematics has been studied in 13C-rich carbonate rocks of the Paleoproterozoic (2.09 ± 0.07 Ga) Tulomozero Formation in the northern Onega Lake area, the SE Fennoscandian Shield. The formation is divided into eight members (A–F) consisting of greenschist-facies-grade, variegated sandstones, siltstones, mudstones, stromatolitic dolostones and subordinate crystalline limestones. Samples of carbonate rocks were obtained from two overlapping drillholes intersecting the entire thickness of the Tulomozero Formation. Prior to isotope analysis, the rocks powders were treated with 1N ammonium acetate for partial removal of the late epigenetic carbonate phases. Major resetting of the Rb–Sr systems in the Tulomozero carbonate rocks appears to take place during the Svecofennian regional metamorphic event, and it was screened by using Mn/Sr, Fe/Sr, Mg/Ca, and 18O/16O ratios. High Sr content (up to 2080 μg/g in limestones, and 530 μg/g in dolostones) coupled with low Fe/Mn (<0.40) ratios in the Tulomozero carbonate rocks of Members A, B (the lower part), D, F, and E are consistent with accumulation of original carbonate sediments in evaporitic lacustrine, playa, and sabkha environments. A decrease in the Sr content with concurrent increase in the Fe/Mn ratio (>0.40) in dolostones of the upper part of Member B, and of Members G and H is indicative of seawater influxes (sea transgression) into the Tulomozero basin. The 87Sr/86Sr values in the least altered (Mn/Sr < 2.0) marine dolostones are 0.70418–0.70442 and 0.70343–0.70409 for the earlier and late phases of the marine transgression, respectively. The decrease in the 87Sr/86Sr ratio in ca. 2.1 Ga seawater is attributable to an increase in hydrothermal flux Sr into the Palaeoproterozoic ocean.  相似文献   

8.
以沙坪沟钼矿主要的赋矿岩石——石英正长岩和花岗斑岩为对象,通过对比不同蚀变强度岩石的岩相学、岩石地球化学和同位素特征,研究该矿床的钾质交代作用-矿化特征,探讨不同热液蚀变的元素组合、蚀变过程中的元素迁移和Sr-Nd同位素的变化及其成因、不同蚀变的物理化学条件差异及其与矿化的关系,进而揭示蚀变-成矿热液流体的特征和起源。研究表明,石英正长岩和花岗斑岩的地球化学特征总体相似,显示其属同源岩浆演化产物,二者均受到钾质蚀变,但蚀变强度相差较大。钾质蚀变岩石的化学成分表现为高K_2O、Rb和低Na_2O、CaO、Sr、Ba,不同蚀变强度的岩石Rb/Sr和Sr同位素组成差别较大,花岗斑岩样品数据更显离散,甚至出现异常低的锶同位素初始值,表明热液蚀变强烈改造了Rb-Sr同位素体系,而Sm-Nd体系基本保持稳定。这一现象在东秦岭-大别钼矿带中典型的斑岩钼矿床也有出现,显示该成矿带具有相似的蚀变类型、热液起源和演化特征。而且钾长石化后期至黄铁云(绢)英岩化阶段也是最主要的钼成矿期,表明这期间流体系统pH值的降低致使Mo元素从流体中沉淀成矿。对比斑岩铜、铜-钼矿床和钼矿床的蚀变特征及其过程中元素和同位素的变化可以发现,这3种矿床均发育碱质交代作用,但蚀变强度、热液的Rb-Sr分异程度及其对原岩的改造程度存在较大差异,这暗示了各自特有的成岩、成矿物质和流体来源及大地构造背景。  相似文献   

9.
《Applied Geochemistry》2006,21(10):1626-1634
Mineral waters in Britain show a wide range of 87Sr/86Sr isotope compositions ranging between 87Sr/86Sr = 0.7059 from Carboniferous volcanic rock sources in Dunbartonshire, Scotland to 87Sr/86Sr = 0.7207 in the Dalradian aquifer of Aberdeenshire, Scotland. The 87Sr/86Sr composition of the waters shows a general correlation with the aquifer rocks, resulting in the waters from older rocks having a more radiogenic signature than those from younger rocks. This wide range of values means that the Sr isotope composition of mineral water has applications in a number of types of studies. In the modern commercial context, it provides a way of fingerprinting the various mineral waters and hence provides a method for recognising and reducing fraud. From an environmental perspective, it provides the first spatial distribution of bio-available 87Sr/86Sr in Britain that can be used in modern, historical and archaeological studies.  相似文献   

10.
The Shiant Isles Main Sill of the British Tertiary Igneous Province is a classic example of a differentiated, alkaline basic sill. Four separate intrusions, each emplaced internally in rapid succession, form a 165-m-thick sill hosted by Lower Jurassic sedimentary rocks. Extensive Nd and Sr isotopic studies were conducted on samples from a vertical section through the sill where the relationships of samples to one another are well defined. The results illuminate patterns of modification of isotopic ratios and clarify the petrogenesis (magma sources, crustal contamination), magmatic processes (bulk mixing, interstitial liquid mixing), and post-magmatic alteration (hydrothermal effects on Sr and Nd). Overall, the whole-rock initial 87Sr/86Sr ratios range from ∼0.7037 to 0.7061 while initial 143Nd/144Nd ratios vary from ∼0.51243 to 0.51286 (ɛNd∼−0.7 to +5.7) – values that contrast markedly with those of the country rock. Acid leaching (HCl) of the whole-rock samples that removes analcime indicates that most of the scatter in the 87Sr/86Sr is caused by the ubiquitous sub-solidus, aqueous alteration during which more-radiogenic Sr was introduced into the sill, especially along the margins, and also reveals magmatic isotopic ratios. In contrast, Nd was immobile during fluid interaction so that the sill 143Nd/144Nd ratios were not affected, even <1 m from the country-rock contact. Using leached rock values, 87Sr/86Sr and 143Nd/144Nd ratios are inversely correlated from magmatic processes. Magmas with two distinct isotopic compositions were involved: a more primitive one with 143Nd/144Nd ∼0.51285 and 87Sr/86Sr ∼0.7035 that produced the first two intrusions and a more evolved one (with 0.51252 and 0.7048) that produced the third intrusion. Mixing of the two magmas was very limited, restricted to near contacts between units, and apparently occurred by interstitial melt migration. The more evolved crinanitic magma was probably produced from a batch of the more primitive picritic melt by a small degree of crustal contamination and crystal fractionation during a short crustal residence prior to ascent and emplacement. Received: 20 December 1999 / Accepted: 5 May 2000  相似文献   

11.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

12.
The results of a Sr isotopic study of coexisting alkaline silicate rocks and carbonatites of two Cretaceous alkaline complexes of India, Amba Dongar (Deccan Flood Basalt Province) and Sung Valley (Rajmahal–Bengal–Sylhet Flood Basalt Province) are reported. The overlapping nature of initial Sr isotopic ratios of alkaline rocks and carbonatites of both the complexes is consistent with a magmatic differentiation model. Modelling of initial 87Sr/86Sr variation in alkaline rocks of Amba Dongar is consistent with a process of crustal assimilation by the parent magma undergoing simultaneous fractional crystallization of silicate rocks and silicate–carbonate melt immiscibility. A maximum of ∼5% crustal contamination has been estimated for the parent magma of Amba Dongar, the effect of which is not seen in the Sr isotope ratio of carbonatites generated by liquid immiscibility. A two point Rb–Sr isochron of the Sung Valley carbonatites, pyoxenite and a phlogopite from a carbonatite yielded an age of 106±11 Ma, which is identical to the 40Ar–39Ar age of this complex. The same age for the carbonatites and the alkaline silicate rocks, similar initial Sr ratios and the higher Sr concentration in the former than the latter favour the hypothesis of liquid immiscibility for the generation of the Sung Valley. The higher initial 87Sr/86Sr ratio for these complexes than that of the Bulk Earth indicates their derivation from long-lived Rb/Sr-enriched sources.  相似文献   

13.
Tectonic exposures of upper plutonics (>800 m) that are part of a contiguous section of young East Pacific Rise (EPR) crust at the Hess Deep Rift provide the first regional-scale constraints on hydrothermal processes in the upper plutonic crust formed at a fast-spreading ridge. Submersible-collected samples recovered over a 4-km-wide region show that the sheeted dike complex is largely underlain by a 150- to 200-m-thick gabbro unit, followed by a more primitive gabbronorite unit. Gabbroic samples are variably altered by pervasive fluid flow along fracture networks to amphibole-dominated assemblages. The gabbroic rocks are significantly less altered (average 11% hydrous phases) than the overlying sheeted dike complex (average 24%), and the percentage of hydrous alteration diminishes with depth. Incipient, pervasive fluid flow occurred at amphibolite facies conditions (average 720°C), with slightly higher temperatures in the lower 500 m of the section. The extent of subsequent lower-temperature alteration is generally low and regionally variable. The gabbroic samples are slightly elevated in 87Sr/86Sr relative to fresh rock values (0.7024) and less enriched than the overlying sheeted dike complex. 87Sr/86Sr for the pervasively altered gabbroic samples ranges from 0.70244 to 0.70273 (mean 0.70257), tonalites is 0.7038, and pyroxene hornfels ranges from 0.70259 to 0.70271. 87Sr/86Sr does not vary with depth, and there is a strong positive correlation with the percentage of hydrous phases. Strontium contents of igneous and hydrothermal minerals, combined with bulk rock 87Sr/86Sr, indicate that Sr-isotopic exchange is largely controlled by the uptake of fluid 87Sr/86Sr in hydrous minerals and does not require Sr gain or loss. The minimum, time-integrated fluid–rock ratio for the sheeted dike complex and upper plutonics is 0.55–0.66, and the fluid flux calculated by mass balance is ~2.1 to 2.5 × 106 kg m−2, 30–60% higher than fluid fluxes calculated in the same manner for sheeted dike complexes on their own at Hess and Pito Deeps, and Ocean Drilling Program Hole 504B. Alteration patterns within the upper plutonics evolved in response to axial magma chamber (AMC) dynamics at the EPR, such that magma replenishment led to assimilation and thermal metamorphism of the country rock, and the position of the hydrothermal root-zone tracked the vertical migration of the AMC. The freshness of the lowermost gabbroic rocks suggests that pervasive fluid flow does not lead to significant fluid and heat fluxes at and near fast-spreading ridges.  相似文献   

14.
Variations in the seawater 87Sr/86Sr curve through time can be caused by fluctuations in the strontium flux or variations in the isotopic ratio from at least six different sources and sinks. Thus, 12 or more parameters control each single measurement although widely accepted assumptions allow this to be reduced to typically six unknowns. Interpreting the causes of time-variation in the seawater 87Sr/86Sr curve is therefore hampered by inherent non-uniqueness. However, this problem is under-constrained rather than unconstrained. As a result, whilst there are an infinite number of possible interpretations, these all come from a few families of very similar solutions. Using this insight, it is possible to find solutions having the smallest possible variations in source flux or source 87Sr/86Sr ratio. Thus, lower-bounds can be placed upon the source variations responsible for the observed fluctuations in the seawater 87Sr/86Sr curve. When applied to the evolution of the Early Jurassic 87Sr/86Sr seawater curve, this approach demonstrates that a short-lived Toarcian event is genuine since it is present in all models, regardless of the values chosen for the unknown source fluxes and unknown source isotope ratios. However, the variations in strontium flux or isotopic ratio necessary to explain the Toarcian event may be significantly smaller than would be predicted assuming modern values for the unknown parameters.  相似文献   

15.
《Applied Geochemistry》2006,21(3):419-436
Geochemical maps expressing areal distributions of chemical elements in the earth’s land surface have been published in several countries in relation to various global environment issues. The authors have applied a radiogenic isotope ratio, 87Sr/86Sr, to geochemical mapping in order to understand the geological origin, transportation and dispersion system of chemical elements in the earth’s land surface. The Sr isotope ratio is a useful tracer for distinguishing the geological origin of surficial deposits, especially in areas where surface exposure of bedrocks is low, because it is not significantly altered by the processes of weathering and transportation. Most bedrocks in the Japanese islands are covered by plants, soils and urban areas. In this study, 142 of 1219 stream sediments (<180 μm) collected from the northeastern part of Aichi Prefecture, in the central part of Japan (75 km × 30 km), were analyzed. Their Sr isotope ratios range from 0.7086 to 0.7315 with an average of 0.7129, except for one sample. This average is higher than the mean of the upper crust of the Japan Arc (the Japanese Island Crustal Composite, JICC), 0.7077. This difference can be attributed to the below-average presence of young volcanic rocks, generally having lower 87Sr/86Sr values, and the above-average presence of granitic rocks, in the study area compared with the surface exposure of the Japan Arc. The first factor controlling the distribution of Sr isotope ratios is the bedrock distributed around the sampling points. Regional variation in the 87Sr/86Sr value shows that it is higher in the western and southeastern parts, where sedimentary rocks and metamorphic rocks are distributed, and that it is lower mainly in the central part, where granitic rocks are distributed. The 87Rb/86Sr–87Sr/86Sr plot for stream sediments more clearly reveals the differences and similarities of bedrocks. In some locations, the distribution of Sr isotope ratios does not correspond to that of bedrocks on the geological map. One reason is the existence of unmapped bedrock, for example, small intrusive masses of granite. The other is fluvial transportation and dispersion. The distribution of the isotope ratios suggests that some stream sediments include surficial deposits from a few km upstream. Application of the Sr isotope ratio to geochemical mapping is useful for revealing both the distribution of unexposed bedrocks and the transportation of surficial deposits. Information on unexposed bedrocks will be expected to contribute to the improvement of geological mapping.  相似文献   

16.
Thirty-one selected volcanic rocks from the Myoko volcano group which comprises a volcanic chain of four independent volcanoes of Quaternary to Recent age are analyzed for 87Sr/86Sr ratios. The rocks of the lizuna volcano, the oldest among the Myoko volcano group, have higher 87Sr/86Sr ratios and show a larger scatter ranging from 0.70437 to 0.70556 than those of other volcanoes. The Kurohime volcanic rocks have a restricted range of 87Sr/86Sr ratios (0.70403∼0.70435). 87Sr/86Sr ratios of the Myoko volcanic rocks are almost the same in average to those of the Kurohime volcanic rocks, although somewhat varied ranging from 0.70378 to 0.70461. A single analysis of the Yakeyama volcanic rock yielded a 87Sr/86Sr ratio of 0.70427. A characteristic pattern in 87Sr/86Sr ratios is observed through the volcanic activity of the Myoko volcano group; 87Sr/86Sr ratios are high in the early stage of the volcanic activity and then decrease to low values, the late eruptives being characterized by constant 87Sr/86Sr ratios. The negative correlation between 87Sr/86Sr and Rb/Sr, and positive correlation between 87Sr/86Sr and Sr found in the rocks of the Iizuna volcano are interpreted to show the occurrence of contamination by materials with high 87Sr/86Sr ratios (>0.7056), low Rb/Sr ratios (<0.01) and high Sr contents (>300 ppm). Sialic crustal contamination may have played only a minor role.  相似文献   

17.
Summary The timing of Zn–Pb mineralization hosted by early dolomitized lagoonal limestones (Crest facies) at Bleiberg (Carinthia, Austria) has been constrained using Sr-isotopes. This late stage Zn–Pb mineralization is a special feature of the Bleiberg deposit. Samples of the mineralized Crest facies are characterized by higher concentrations of minor and trace elements (except Ba and Sr) compared to samples from the weakly mineralized Wetterstein limestone of the lagoonal facies. The samples from the Crest facies indicate that a fluid with a minimum 87Sr/86Sr ratio of 0.7083 reacted at 210±30 Ma with carbonate rocks having 87Sr/86Sr ratios of approximately 0.7077 during a late stage of ore formation. The 87Sr/86Sr ratios correlate with the Mn and Cl concentrations. Lead isotope data of whole rock samples of Bleiberg yielded an isochron age of 180±40 Ma. They furthermore confirm the presence of two types of common lead; an isotopically distinct ore lead component is present within and close to the ore bodies. The other common Pb component is present in host rocks and in gangue minerals and is distinguished from the ore lead by lower 207Pb/204Pb and 208Pb/204Pb ratios. The Sr and the Pb ages are consistent with geological evidence indicating a Triassic age of Pb–Zn mineralization and support genetic models emphasizing the role of bacteriogenic sulfate reduction at low temperatures prior to subsidence and burial. Elevated 87Sr/86Sr values (>0.7080) of gangue minerals indicate an epigenetic origin of strontium. Our results are consistent with a genetic model postulating formation of the ore-bearing hydrothermal fluids “at depth” where they leached lead from pre-Upper Carboniferous basement rocks.  相似文献   

18.
Carbonates in a 30 cm wide zoned kimberlite dyke from the De Beers Mine, Kimberley, S. Africa were studied by cathodoluminescence and electron microprobe techniques and their 87Sr/86Sr ratios were measured using an AEI-IM20 ion microprobe. Primary carbonates (including calcite dendrites, rhombohedral calcites in segregation vesicles and mosaic dolomite) have high Sr (0.69–1.35 wt.% SrO) and Ba (0.24–0.44% BaO) and 87Sr/86Sr ratios in the range 0.7046 to 0.7056. Secondary sparry calcite in amygdales and veins is characterised by low Ba (<0.05% BaO) and 87Sr/86Sr near 0.72. Rhombohedral calcite 0.5 cm from a contact with 2,900 my. old biotite-gneiss has minor element chemistry like that of primary carbonate, but an elevated 87Sr/86Sr ratio of 0.7103, possibly indicating crustal contamination in a boundary layer of the kimberlite magma. Amygdale-like segregations of carbonate and/or serpentine originated as gas-cavities and were not formed by liquid immiscibility. They are now filled either by secondary calcite or by minerals precipitated from residual kimberlite liquid. However, dendritic calcite and primary dolomite and calcite with high Sr, Ba and low 87Sr/86Sr demonstrate shared chemical characteristics between these carbonates and carbonatite. The primary kimberlite magma had initial 87Sr/86Sr close to 0.7046.  相似文献   

19.
Abstract: Hydrothermally altered areas forming pyrophyllite‐kaolin‐sericite‐alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc‐alkaline series formed in the volcanic arc of continental margin by subduction‐related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea.  相似文献   

20.
研究目的】思茅盆地赋存有中国唯一的前第四纪固体钾盐矿床,该矿床的成因一直存在争议。客观地认识矿床成因、合理地构建矿床成因模式,不仅是钾盐矿床学研究中亟需解决的基础科学问题,而且关乎盆地内钾盐资源勘查方向的选择。【研究方法】本项研究以思茅盆地L-2井和MZK-3井的盐岩、盐岩上覆和下伏碎屑岩、盐岩中的碎屑岩为主要研究对象,重点分析其锶同位素地球化学特征。【研究结果】结果表明:(1)L-2井全岩样品87Sr/86Sr值为0.708220~0.727458,平均值为0.712776;盐岩水不溶物87Sr/86Sr值为0.711342~0.741999,平均值为0.716574;(2)MZK-3井盐岩上覆碎屑岩层87Sr/86Sr值为0.713318~0.723147,平均值为0.717255;盐岩下伏碎屑岩层87Sr/86Sr值为0.712470~0.738988,平均值为0.719307;(3)碎屑岩样品经过87Rb校正恢复至初始沉积状态的87Sr/86Sr值为0.710880~0.727678,平均值为0.712828;(4)盐岩样品87Sr/86Sr值全部明显小于大陆地表风化系统的平均值,有个别样品87Sr/86Sr值大于现代海水。【结论】基于思茅盆地基础地质和钾盐矿床地质已有的研究成果,结合盐岩和碎屑岩锶同位素地球化学特征,可以得出:思茅盆地含钾盐岩与碎屑岩处于不同的锶同位素平衡体系;含钾盐岩的物源主体为海水,成盐过程中陆源淡水的补给可使87Sr/86Sr值增大;碎屑岩沉积于陆相环境,在与固态盐岩或盐岩水溶液接触之前已处于早成岩阶段A亚期;钾盐的成矿模式为勐野井组沉积期深层源盐通过走滑拉分形成的断层迁移至地表,在由高处向汇水盆地迁移过程中捕获了处于早成岩阶段A亚期的碎屑颗粒,形成了现今的含泥砾盐岩;部分含泥砾盐岩在迁移进入汇水盆地之后,经历了溶解-重结晶的过程,形成了盆地内成分较纯的盐岩;后续沉积的碎屑颗粒形成了防止盐岩溶蚀破坏的保护层;新生代的喜山运动使早期形成的钾盐矿床发生调整改造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号