首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Major- and trace-element contents and Sr–Nd isotope ratios were determined in albitite, albitized and unaltered late-Variscan granitoid samples from the world-class Na-feldspar deposits of central Sardinia, Italy. The albite deposit of high economic grade has geological, textural, and chemical features typical of metasomatic alteration affecting the host granitoids. Albitization, locally accompanied by chloritization and epidotization, was characterized by strong leaching of Mg, Fe, K, and geochemically similar trace elements, and by a significant increase of Na. Ca, and P were moderately leached in the most metasomatized rocks. Other major (Si, Ti, Ca) and trace elements (U, Th, Y, and Zr), along with light (LREE) and middle (MREE) rare-earth elements, behaved essentially immobile at the deposit scale. The Nd-isotope ratios (0.512098 to 0.512248) do not provide information on the emplacement age of the unaltered late-Variscan granitoids. On the other hand, their Sr-isotope ratios fit an errorchron of 274±29 Ma (1σ error), in fair agreement with all published ages of Sardinian Variscan granitoids. The very low Rb content of albitized rocks precludes application of the Rb–Sr radiometric system to determine the age of albitization. The Sm–Nd system is not applicable either, because the 143Nd/144Nd ratios of albitized rocks and unaltered granitoids overlap. The overlap confirms that Sm and Nd were substantially immobile during albitization. On the other hand, the measured 87Sr/86Sr ratios of the albitized rocks are appreciably lower than those of the unaltered host granitoids, whereas, their initial Sr-isotope ratios are higher. This seems to suggest that a) albitization was induced by non-magmatic fluids rich in radiogenic Sr, and b) albitization occurred shortly after the granitoid emplacement. This conclusion is supported by Nd isotopes, because unaltered granitoids and albitites fit the same reference isochron at 274 Ma. The fluids acquired radiogenic Sr by circulation through the Lower Paleozoic metasedimentary basement. Specifically, it is estimated that Sr supplied by the non-carbonatic basement represents about 22 wt% of total Sr in albitite.  相似文献   

2.
A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites. Editorial responsibility: W. Schreyer  相似文献   

3.
The Shiant Isles Main Sill of the British Tertiary Igneous Province is a classic example of a differentiated, alkaline basic sill. Four separate intrusions, each emplaced internally in rapid succession, form a 165-m-thick sill hosted by Lower Jurassic sedimentary rocks. Extensive Nd and Sr isotopic studies were conducted on samples from a vertical section through the sill where the relationships of samples to one another are well defined. The results illuminate patterns of modification of isotopic ratios and clarify the petrogenesis (magma sources, crustal contamination), magmatic processes (bulk mixing, interstitial liquid mixing), and post-magmatic alteration (hydrothermal effects on Sr and Nd). Overall, the whole-rock initial 87Sr/86Sr ratios range from ∼0.7037 to 0.7061 while initial 143Nd/144Nd ratios vary from ∼0.51243 to 0.51286 (ɛNd∼−0.7 to +5.7) – values that contrast markedly with those of the country rock. Acid leaching (HCl) of the whole-rock samples that removes analcime indicates that most of the scatter in the 87Sr/86Sr is caused by the ubiquitous sub-solidus, aqueous alteration during which more-radiogenic Sr was introduced into the sill, especially along the margins, and also reveals magmatic isotopic ratios. In contrast, Nd was immobile during fluid interaction so that the sill 143Nd/144Nd ratios were not affected, even <1 m from the country-rock contact. Using leached rock values, 87Sr/86Sr and 143Nd/144Nd ratios are inversely correlated from magmatic processes. Magmas with two distinct isotopic compositions were involved: a more primitive one with 143Nd/144Nd ∼0.51285 and 87Sr/86Sr ∼0.7035 that produced the first two intrusions and a more evolved one (with 0.51252 and 0.7048) that produced the third intrusion. Mixing of the two magmas was very limited, restricted to near contacts between units, and apparently occurred by interstitial melt migration. The more evolved crinanitic magma was probably produced from a batch of the more primitive picritic melt by a small degree of crustal contamination and crystal fractionation during a short crustal residence prior to ascent and emplacement. Received: 20 December 1999 / Accepted: 5 May 2000  相似文献   

4.
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature, of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

6.
Pliocene to recent volcanic rocks from the Bulusan volcanic complex in the southern part of the Bicol arc (Philippines) exhibit a wide compositional range (medium- to high-K basaltic-andesites, andesites and a dacite/rhyolite suite), but are characterised by large ion lithophile element enrichments and HFS element depletions typical of subduction-related rocks. Field, petrographic and geochemical data indicate that the more silicic syn- and post-caldera magmas have been influenced by intracrustal processes such as magma mixing and fractional crystallisation. However, the available data indicate that the Bicol rocks as a group exhibit relatively lower and less variable 87Sr/86Sr ratios (0.7036–0.7039) compared with many of the other subduction-related volcanics from the Philippine archipelago. The Pb isotope ratios of the Bicol volcanics appear to be unlike those of other Philippine arc segments. They typically plot within and below the data field for the Philippine Sea Basin on 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, implying a pre-subduction mantle wedge similar to that sampled by the Palau Kyushu Ridge, east of the Philippine Trench. 143Nd/144Nd ratios are moderately variable (0.51285–0.51300). Low silica (<55 wt%) samples that have lower 143Nd/144Nd tend to have high Th/Nd, high Th/Nb, and moderately low Ce/Ce* ratios. Unlike some other arc segments in the Philippines (e.g. the Babuyan-Taiwan segment), there is little evidence for the involvement of subducted terrigenous sediment. Instead, the moderately low 143Nd/144Nd ratios in some of the Bicol volcanics may result from subduction of pelagic sediment (low Ce/Ce*, high Th/Nd, and high Th/Nb) and its incorporation into the mantle wedge via a slab-derived partial melt.  相似文献   

7.
Summary ?Major and trace element contents and Sr–Nd isotope ratios of selected volcanics of Pliocene age from the Almopia area, central Macedonia, Greece, have been determined. These rocks are mainly distinguished as two groups based on geographical, petrological and isotopic data: a) the east–central western group (E–CW) and b) the south western group (SW). The absence of contemporaneous basic volcanics in the Almopia area coupled with the considerable scatter of elements in variation diagrams rule out fractional crystallization as the dominant differentiation process. Instead, disequilibrium textures along with the positive correlation of Sr-isotope ratios with differentiation suggest mixing between a basic and an acid component combined with assimilation and fractionation. The spider diagrams of the most silica-poor volcanics show evidence of subduction-related processes, indicating that the parental magmas may have been derived from partial melting of mantle wedge enriched in LILE and LREE by subducted slab-derived fluids. Previous data on the oxygen isotope composition of the same volcanics are consistent with this genetic hypothesis. Lastly, the relatively high 87Sr/86Sr and low 143Nd/144Nd ratios (0.7080 and 0.512370, respectively) of the volcanic sample inferred to be compositionally the closest one to the parental magma of Almopia rocks suggest that the incompatible element enrichment of the mantle source is old, probably of Proterozoic age. Received December 12, 2001; revised version accepted June 20, 2002 Published online November 29, 2002  相似文献   

8.
This paper reports first isotope–geochemical data on the Early Devonian magmatic rocks of the Chanchar potassic mafic volcanoplutonic complex of the Sakmara zone of the South Urals. The incompatible element distribution and ratios indicate that the rocks of the volcanic, subvolcanic, and intrusive facies are comagmatic and were derived from a common source. The low HFSE concentrations relative to MORB and relatively low 87Sr/86Sr and high 143Nd/144Nd ratios suggest that primary melts were generated from a moderately depleted mantle. The LILE enrichment of the rocks indicates a flux of mantle fluid in the primary magma during its evolution.  相似文献   

9.
We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements (i.e. Rb, Ba, Th, K and LREEs) and even larger variation in radiogenic (Pb, Sr, Nd) isotope ratios. Tibetan adakitic rocks have extraordinarily low HREE (Yb: 0.34–0.61 ppm) and Y (3.71–6.79 ppm), high Sr/Y (66–196), high Dyn/Ybn and Lan/Ybn. They show strong evidence of binary mixing both in isotopic space (Sr-Nd, common Pb, thorogenic Pb) and trace element systematics. The majority of the adakitic rocks in south Tibet, including published and our new data, have variational Mg# (0.32–0.70), clear Nb (and HFSE) enrichment, the lowest initial 87Sr/86Sr and 206Pb/204Pb ratios, and the highest 144Nd/143Nd ratios of all Neogene volcanic rocks in south Tibet. These results indicate an involvement of slab melts in petrogenesis. Major and trace element characteristics of the isotopically more enriched adakites are compatible with derivation from subducted sediment but not with assimilation of crustal material. Thus, the south Tibetan adakitic magmas are inferred to have been derived from an upper mantle source metasomatised by slab-derived melts. An interesting observation is that temporally coeval and spatially related lamproites could be genetically related to the adakitic rocks in representing partial melts of distinct mantle domains metasomatised by subducted sediment. Our favoured geodynamic interpretation is that along-strike variation in south Tibetan post-collisional magma compositions may be related to release of slab melts and fluids along the former subduction zone resulting in compositionally distinct mantle domains.  相似文献   

10.
The fluorite deposits of the Valle de Tena, Central Pyrenees, include stratabound (Portalet) and vein (Lanuza and Tebarray) deposits the formation of which are linked to a Namurian-Westfalian emersion episode and to post-Hercynian hydrothermal systems similar to those occurring elsewhere in Hercynian Europe. In this study, strontium isotopes were used to determine the source(s) of strontium, and by inference calcium, of the fluorite mineralizations, as well as the nature of the ore-forming fluids. Fluorite and calcite from each deposit have similar 87Sr/86Sr ratios (Portalet 0.7085–0.7108; Lanuza 0.7086–0.7104 and Tebarray 0.7086–0.7101). In all deposits, the Sr isotope composition of most of the Ca-minerals is more radiogenic than that of the host limestones. This indicates that the Ca-minerals contain a mixture of Sr derived locally from the host limestones and 87 Sr-enriched Sr leached from silicate minerals in the siliciclastic portion of the basement sequence and in granites from the study area. Volcanic rocks are ruled out as a significant Sr source for the fluorite deposits. The observed trend in 87Sr/86Sr versus 1/Sr support a fluid-rock interaction model which satisfactorily reproduces the marked 87Sr-enrichment in the fluorites and calcites from the deposits. Received: 19 February 1997 / Accepted: 22 July 1997  相似文献   

11.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   

12.
Nd and Hf isotope systematics of oceanic basaltic rocks are often assumed to be largely immune to the effects of hydrothermal alteration. We have tested this assumption by comparing Nd and Hf isotope data for acid-leached Cretaceous oceanic basalts from Gorgona and DSDP Leg 15 with unleached data on the same rocks. Hf isotope values and Lu/Hf ratios are relatively unaffected by leaching, but 143Nd/144Nd values of leached samples are significantly higher than those of unleached fractions of the same sample in most cases. Furthermore, the Sm/Nd ratios of the majority of leached samples are 10–40% greater than those of unleached samples. X-ray diffraction studies indicate that selective removal of secondary minerals, such as smectite, during the acid leaching process is responsible for the fractionation of Sm/Nd ratios. These results have implications for interpretation of the Hf–Nd isotope systematics of ancient submarine rocks (older than ~ 50 Ma), as (1) the age-corrected 143Nd/144Nd ratio may not be representative of the primary magmatic signature and (2) the uncertainty of the age-corrected εNd value may exceed the assumed analytical precision.  相似文献   

13.
The Jurassic to Early Cretaceous magmatic arc of the Andes in northern Chile was a site of major additions of juvenile magmas from the subarc mantle to the continental crust. The combined effect of extension and a near stationary position of the Jurassic to lower Cretaceous arc favoured the emplacement and preservation of juvenile magmatic rocks on a large vertical and horizontal scale. Chemical and Sr, Nd, and Pb isotopic compositions of mainly mafic to intermediate volcanic and intrusive rock units coherently indicate the generation of the magmas in a subduction regime and the dominance of a depleted subarc mantle source over contributions of the ambient Palaeozoic crust. The isotopic composition of the Jurassic (206Pb/204Pb: ∼ 18.2; 207Pb/204Pb: ∼ 15.55; 143Nd/144Nd: ∼ 0.51277; 87Sr/86Sr: ∼ 0.703–0.704) and Present (206Pb/204Pb: ∼ 18.5; 207Pb/204Pb: ∼ 15.57; 143Nd/144Nd: ∼ 0.51288; 87Sr/86Sr: ∼ 0.703–0.704) depleted subarc mantle beneath the Central and Southern Andes (18°–40°S) was likely uniform over the entire region. Small differences of isotope ratios between Jurassic and Cenozoic to Recent of subarc mantle-derived could be explained by radiogenic growth in a still uniform mantle source.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

14.
Two distinct crustal provinces have been identified in the southern mid-continent based on U–Pb crystallization ages. Both contain large volumes of undeformed granite and rhyolite, with minor amounts of metamorphic rock and mafic intrusions. The Eastern Granite-Rhyolite province is characterized by felsic rocks with crystallization ages of 1,470 ± 30 Ma and exposures are restricted to the St. Francois Mountains in southeastern Missouri. Similarly, the Southern Granite-Rhyolite (SGR) province is characterized by felsic units with ages of 1,370 ± 30 Ma with primary exposures in the eastern Arbuckle Mountains of southern Oklahoma. Within the SGR province three magmatic pulses can be identified starting at 1,400, 1,370, and 1,340 Ma. Although the crystallization ages are different, the Sm–Nd isotopic signatures are similar for the units exposed in these areas as well as the buried basement in between. Depleted mantle model ages for rocks within the Arbuckle Mountains range from 1,530 to 1,430 Ma with ɛNd(t) values of +3.2 to +4.1 while units of the St. Francois Mountains range from 1,550 to 1,430 Ma and +4.5 to +4.7. Comparison of Sm–Nd isotopic data also indicate similarities between the 147Sm/144Nd and 143Nd/144Nd ratios for the rock units in these areas suggesting a common source.  相似文献   

15.
Summary Major element, trace element, Sr- and Nd-isotopes and mineral chemical data are reported for alkaline rocks (lamprophyres, tephrites, melanephelinites, nephelinites and nepheline syenites) cross-cutting the Deccan Trap lava flows south (Murud-Janjira area) and north of Mumbai (Bassein). These rocks range from sodic to potassic and have a large span in MgO (12–2 wt%). The lamprophyres have high content of incompatible elements (e.g., TiO2 > 3.8 wt%, Nb > 130 ppm, Zr > 380 ppm, Ba > 1200 ppm), and relatively high initial (at 65 Ma) 143Nd/144Nd (0.5128) and low 87Sr/86Sr (0.7038–0.7042). They are likely to be small-degree melts (2–3%) of volatile- and incompatible element-enriched mantle sources, similar to other alkaline rocks in the northern Deccan, though slightly more potassium-rich. The nepheline-rich rocks have highly porphyritic textures (up to 57% phenocrysts of diopside ± olivine), and anomalously low contents of incompatible elements (e.g., TiO2 < 1.3 wt%, Nb < 24 ppm, Zr < 100 ppm) indicating that they could not represent liquid compositions. Moreover, their very low initial 143Nd/144Nd ratios (0.5116–0.5120), at 87Sr/86Sr = 0.7045–0.7049, are unusual in the rocks related to the Deccan Traps and identify a new end-member in this province, that could be identified as “Lewisian-type” lower crust and/or enriched mantle. The melting episode that generated these alkaline rocks likely occurred close to the base of the ca. 100 km-thick Indian lithosphere, very shortly after the main eruption of the Deccan tholeiites. Received January 14, 2000; revised version accepted September 28, 2001  相似文献   

16.
The REE and Pb, Sr, Nd isotopes in three xenoliths from limburgite and scoria-breccias, including spinel-lherzolite, spinel-garnet-lherzolite and phlogopite-gamet-lherzolite, were analysed. The REE contents of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE patterns characterized by weak LREE depletion. The143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with εNd=+ 8.2− +15.8,206Pb/204 Pb < 18.673, and207Pb/204Pb < 15.574. All this goes to show that the upper mantle in Mingxi at the depth of 67–82 km is a depleted mantle of MORB type, with87Sr/86 Sr ratios 0.70237–0.70390. In Nd-Sr diagram the data points of whole rocks are all out of the mantle array, implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array.  相似文献   

17.
The petrogenesis of Abu Khruq, an 89 Ma alkaline ring complex of eastern Egypt which is composed of alkali gabbros and both silica over- and undersaturated syenites, has been investigated. Major and trace element relationships and Nd and Sr isotope data are consistent with formation of the gabbros from an alkaline mafic magma that experienced extensive fractionation, and all syenites from a felsic derivative of this melt. The parental magma had an 87Sr/86Sr of 0.7030 and an 143Nd/144Nd of 0.512750 (Nd = +4.4) indicating derivation from a depeleted mantle source. The initial 143Nd/144Nd ratios are: 0.512721 to 0.512748 for the gabbros, 0.512739 to 0.512750 for the alkali syenites and trachytes, 0.512717 to 0.512755 for the nepheline syenites, and, 0.512706 to 0.512732 for the quartz syenites. In contrast, analyzed Precambrian granites from eastern Egypt have generally lower 143Nd/144Nd ratios (ranging from 0.51247 to 0.51261 or Nd = -0.8 to 1.7, for 89Ma); their Nd model ages range from 775 to 935 Ma and suggest there was no significant input of pre-Pan-African crust in their formation. Among Abu Khruq rocks, 143Nd/144Nd ratios indicate that the quartz syenites formed by open-system, crustal contamination processes whereas the nepheline syenites experienced little or no contamination. Modeling shows that contamination occurred at various stages, affecting both mafic and more evolved compositions with input of about 20% crustal Nd for the most contaminated samples. The degree of contamination is related to the silica saturation of the quartz syenites. Simplified modeling of magma evolution within Petrogeny's Residua System demonstrates the ability of AFC processes to cause a critically undersaturated magma to evolve across the feldspar join and produce oversaturated rocks. The oversaturated syenites at Abu Khruq were produced in this manner whereas the nepheline syenites formed by fractionation without similarly large degrees of contamination. The results have broad implications for the formation of subvolcanic complexes in continental settings beyond the important production of silica oversaturated compositions from crustal interaction. They underscore the importance of crustal interactions in the formation of the various lithologies. Such interactions occur at various stages in the evolution of the magmas and, as such, are not strictly coupled with fractional crystallization. While previous study of Abu Khruq has demonstrated extensive hydrothermal alteration of O and Sr isotopes, the present work shows that the Nd isotope ratios were not significantly affected and thus reflect magmatic signatures. This feature combined with relatively small corrections for initial ratios emphasizes the utility of Nd isotopes for petrogenetic studies.  相似文献   

18.
利用套柱法快速分离提纯Sr和Nd元素   总被引:1,自引:1,他引:0  
样品放射性成因Sr-Nd同位素比值受控于源区初始同位素组成、放射性元素母体与子体相对丰度,以及衰变时间等因素。它们具有极强的示踪能力,因而在地质学领域有广泛的应用。传统的Sr-Nd同位素分析使用的是阳离子树脂,提纯Nd元素时往往涉及有机试剂以及调节pH值等操作,其分析效率较低。近年来特效树脂的出现使得分离这些元素变得简单,但是受硫酸根等因素影响,特效树脂使用次数有限。为了提高分析效率,缩短分析时间,本文开发了一种套柱法,该方法结合阳离子树脂和特效树脂,实现了Sr-Nd元素的快速分离,并且能延长特效树脂的使用寿命。实验采用阳离子树脂、Sr特效树脂和LN稀土特效树脂对玄武岩BCR-2标样进行了分析。Sr-Nd回收率均90%,BCR-2玄武岩~(87)Sr/~(86)Sr比值为0.705016±0.000016(n=36,1SD),~(143)Nd/~(144)Nd比值为0.512624±0.000012(n=39,1SD),与前人TIMS法获得的结果吻合(~(87)Sr/~(86)Sr:0.705000~0.705023;~(143)Nd/~(144)Nd:0.512630~0.512650)。最终分离提纯的溶液中~(85)Rb/~(86)Sr值小于0.01,~(147)Sm/~(144)Nd值小于0.001,表明该方法可以高效分离Rb-Sr和Sm-Nd,实现Sr、Nd同位素的准确分析。  相似文献   

19.
湘西渣滓溪钨锑矿床白钨矿的Sm-Nd和Sr同位素地球化学   总被引:4,自引:0,他引:4  
彭建堂 《地质学报》2008,82(11):1514-1521
渣滓溪钨锑矿床位于湘西雪峰山弧形构造带的中段,是我国典型的脉状充填型锑矿床。本文对渣滓溪矿区不同产状产出的白钨矿进行了Sm-Nd和Sr同位素研究。研究表明,渣滓溪矿区白钨矿Sm/Nd变化范围相对较宽(0.36~0.63),143Nd/144Nd为0.51211~0.51288;在147Sm/144Nd-143Nd/144Nd图解中,该矿白钨矿样品没有明显的线性分布趋势,无法厘定出该矿的准确成矿时间。该矿白钨矿的Nd(t)明显可分为两组(-10.2~-14.7和-3.79~+0.01),其成矿流体中的Nd主要有两个来源,一部分可能来自晚元古代地层或下伏陆壳基底的碎屑岩,另一部分很可能与冷家溪群的基性、超基性岩有关。与Nd同位素不同,渣滓溪成矿流体中Sr同位素组成均一化程度较高,该矿白钨矿87Sr/86Sr为0.7304~0.7329;该矿这种明显富放射成因87Sr的成矿热液,排除了成矿流体来自海水和赋矿围岩作为唯一矿源层的可能性,下伏陆壳的结晶基底很可能是这种高放射成因Sr的提供者。沃溪和渣滓溪矿区白钨矿Sr-Nd同位素组成的对比研究表明,两矿区的成矿物质来源有所不同,前者应来自一种更古老、更成熟、更富放射成因Sr的下伏陆壳基底。  相似文献   

20.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号