首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
A database with about 60 undrained monotonic and cyclic triaxial tests on kaolin is presented. In the monotonic tests, the influences of consolidation pressure, overconsolidation ratio, displacement rate and sample cutting direction have been studied. In the cyclic tests, the stress amplitude, the initial stress ratio and the control (stress vs. strain cycles) have been additionally varied. Isotropic consolidation leads to a failure due to large strain amplitudes with eight-shaped effective stress paths in the final phase of the cyclic tests, while a failure due to an excessive accumulation of axial strain and lens-shaped effective stress paths was observed in the case of anisotropic consolidation with \(q^{\text{ ampl }}< |q^{\text{ av }}|\). The rate of pore pressure accumulation grew with increasing amplitude and void ratio (i.e. decreasing consolidation pressure and overconsolidation ratio). The “cyclic flow rule” well known for sand has been confirmed also for kaolin: With increasing value of the average stress ratio \(|\eta ^{\text{ av }}| = |q^{\text{ av }}|/p^{\text{ av }}, \) the accumulation of deviatoric strain becomes predominant over the accumulation of pore water pressure. The tests on the samples cut out either horizontally or vertically revealed a significant effect of anisotropy. In the cyclic tests, the two kinds of samples exhibited an opposite inclination of the effective stress path. Furthermore, the horizontal samples showed a higher stiffness and could sustain a much larger number of cycles to failure. All data of the present study are available from the homepage of the first author. They may serve for the examination, calibration or improvement in constitutive models dedicated to cohesive soils under cyclic loading, or for the development of new models.  相似文献   

2.
冷建  叶冠林  王建华  杜守继 《岩土力学》2015,36(Z1):387-391
为了获得上海软土在循环动力荷载作用下的动力特性,特别是动剪切模量的衰减规律,采用原状第④层上海软土进行等向固结不排水动三轴试验,分析了加载频率和动应力比 对动剪切模量的影响。试验结果表明,对于上海第④层软土,动应力比达到0.2时,土样才发生破坏;土样的剪切模量-累积轴应变曲线不受加载频率和动应力比的影响;剪切模量的衰减下降主要发生在轴应变0~1%区间。最后提出了一个描述剪切模量衰减规律的数学模型。  相似文献   

3.
The presented results of cyclic triaxial tests on sand demonstrate that the cumulative effects due to small cycles obey a kind of flow rule. It mainly depends on the average stress ratio about which the cycles are performed. This so-called “cyclic flow rule” is unique and can be well approximated by flow rules for monotonic loading. Amongst others it is shown that the cyclic flow rule is only moderately influenced by the average mean pressure, by the strain loop (span, shape, polarization), the void ratio, the loading frequency, the static preloading and the grain size distribution curve. A slight increase of the compactive portion of the flow rule with increasing residual strain (due to the previous cycles) was observed. These experimental findings prove that the cyclic flow rule is an essential and indispensable concept in explicit (N-type) accumulation models.  相似文献   

4.
In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

5.
实际交通荷载作用下,路基土单元内的竖向应力和水平应力大小不断发生变化,剪应力幅值和方向也不断变化,从而导致土体中的应力路径呈现出主应力轴连续旋转的现象。通过GDS空心圆柱扭剪仪模拟类似交通荷载作用下的应力路径,开展不同围压和不同循环应力比下的主应力轴连续旋转试验,旨在研究在交通荷载类轴向纯压缩条件下主应力轴方向连续旋转时循环应力比与围压对原状软黏土的强度、累积应变、回弹应变、软化等因素的影响。试验结果表明:随着孔压的不断累积,原状饱和软黏土试样逐渐软化,轴向模量和剪切模量均随着循环应力比和围压的增加而逐渐降低,并在主应力轴旋转一定的循环次数后达到稳定。当循环应力比较小时,轴向和剪切应力-应变滞回曲线均呈线性,不同主应力轴循环旋转次数下的轴向和剪切应力-应变滞回曲线近乎重合。随着主应力轴循环旋转次数的增加,轴向和剪切应力-应变滞回曲线越来越表现出明显的非线性,不同循环次数下试样的轴向和剪切应力-应变滞回圈不再重合且滞回圈逐渐向x轴倾斜。随着循环应力比的增加,在主应力轴连续旋转初期,轴向模量和剪切模量迅速衰减,且随着循环次数的增加而达到稳定,并且试样的轴向模量和剪切模量达到稳定时的主应力轴连续旋转的循环次数随循环应力比和围压的增大而不断增大。  相似文献   

6.
Cyclic soil degradation and hardening affects soil stiffness and strength, and is linked to an increase or decrease in the mean effective confining stress due to void ratio or pore pressure changes. This change of state can be explicitly modeled by using effective stress methods, or implicitly modeled using total stress methods. In the latter, this is achieved by using empirical functions based on the number of loading cycles that are derived from constant-amplitude stress or strain laboratory tests. To suite generalized loading conditions, these functions must be extrapolated to variable-amplitude loading. This falls under the general class of a fatigue-based problem. The main focus of this paper is to present a generalized consistent soil fatigue formulation for soils under cyclic loading. The paper then goes on to discuss the implementation of various cyclic soil degradation and hardening models reported in the literature, and highlights their important underlying assumptions, capabilities and limitations.  相似文献   

7.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

8.
A series of laboratory tests was performed to assess the effects of frequency on the dynamic properties of sandstone samples subjected to cyclic loading in the confining stress state. Three levels of confining pressure (2.0, 10.0, and 40.0 MPa) and three sets of frequencies (0.1, 1.0, and 3.0 Hz) were applied for the axial cyclic loading tests by the MTS-815 Rock and Concrete Test System. The results from the cyclic loading tests indicate that frequency has a strong influence on the dynamic deformation, the dynamic stiffness, and the failure mode at the same confining pressure. With an increase in the frequency, the axial strain and the number of cycles at failure increased at the same confining pressure, the residual volumetric strain increased when dilatancy occurred at the same confining pressure, and the number of cycles at failure increased. A new damage variable D was defined that describes the degradation process of sandstone samples upon dynamic cyclic loading. The larger the frequency, the wider the localized band. Sandstone samples subjected to dynamic cyclic loading responded with a significantly higher initial stiffness. The higher the initial stiffness, the greater the frequency.  相似文献   

9.
循环荷载下人工结构性土变形与强度特性试验研究   总被引:1,自引:0,他引:1  
刘维正  瞿帅  章定文  徐林荣 《岩土力学》2015,36(6):1691-1697
针对长期动载作用下天然沉积结构性黏土地基强度和刚度循环软化问题,分别以水泥和食糖为模拟粒间胶结和大孔隙的材料,制备了不同胶结强度和初始孔隙比的人工结构性土,开展了人工结构性土与相应重塑土的动三轴试验,分析了土体胶结强度、初始孔隙比、围压和动应力幅值对累积变形和动强度的影响规律。试验结果表明:累积应变-振动次数曲线以临界循环应力为界分为:塑性安定型、临界型和破坏型;临界循环应力随胶结强度增大、初始孔隙比减小而增大;土体胶结强度越高,脆性破坏越明显,累积应变曲线转折点对应的应变越小。动强度的应变破坏标准采用转折点应变值更符合土性变化规律;动强度随胶结强度增大、初始孔隙比减小而增大;动黏聚力cd随破坏振次增大而降低,而动内摩擦角?d基本不变。试验结果可为软弱土地基动力灾变控制提供有益参考。  相似文献   

10.
蒋敏敏  蔡正银  曹培  方伟 《岩土力学》2009,30(Z2):204-207
通过等压固结静、动三轴试验,研究了渤海湾粉质黏土在循环荷载作用下的动力性质和循环荷载后不排水静力性质。试验结果表明,循环应力幅值比越大,平均轴向应变和轴向应变幅值越大;循环应力幅值比达到0.4时,平均轴向应变和轴向应变幅值随着循环周数增加迅速增大;循环应力幅值比相同,固结应力越大,轴向应变幅值越大,而平均轴向应变越小。在较大的循环应力幅值比下,平均孔压比值和孔压幅值比值随着循环周数的增大会达到稳定;循环应力幅值比越大平均孔压比值和孔压幅值比值均越大;相同循环应力幅值,固结应力越大平均孔压比值越小,而固结应力对孔压幅值比值影响较小。循环荷载的作用会导致循环荷载后不排水剪在q-p’平面上有效应力路径和孔压发展表现出超固结土的性质。  相似文献   

11.
利用GDS空心圆柱仪进行了一系列主应力方向角?d变化的轴向、扭转、内压和外压四向耦合不排水循环剪切试验。在均等固结条件下,着重研究了循环加载方向角?d0对饱和粉土动力特性的影响。试验结果表明:饱和粉土的双规准化孔压发展模式与?d0无关,但受循环应力比CSR的影响;广义剪应变的发展模式不受?d0的影响。在循环剪切过程中,循环加载方向的变化对粉土的不排水动强度有显著影响,饱和粉土的动强度CRR随着?d0的增大呈现出先减小后增大的变化趋势,且当?d0=45°时CRR最小。同时,建立了反映?d0与CSR影响的孔压、变形的模型,并给出了相应的动强度表达式。  相似文献   

12.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. It is the purpose of these two companion papers to provide such database collected for a fine sand. Part II concentrates on the undrained triaxial tests with strain cycles, where a large range of strain amplitudes has been studied. Furthermore, oedometric and isotropic compression tests as well as drained triaxial tests with un- and reloading cycles are discussed. A combined monotonic and cyclic loading has been also studied in undrained triaxial tests. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

13.
The objective of this study was to evaluate the effect of fly ash amendment on the compression behavior of mine tailings. Natural and synthetic (i.e., laboratory prepared) mine tailings were used to assess the effects of tailings composition and tailings solids content on compressibility. Three types of off-specification fly ashes and Type I–II Portland cement were used as cementitious binders. Tailings-fly ash mixtures were prepared at solids content of 60–75% (water content = 33–67%), water-to-binder ratios of 2.5 and 5, and were cured for 0.1 days (2 h), 7, and 28 days. Bi-linear compression curves on semi-log plots were observed in most of the binder-amended tailings specimens. The break in slope on the compression curve was identified as the breaking stress, whereupon cementitious bonds were broken. The breaking stress increased with an increase in fly ash content, which was attributed to a lower water-to-binder ratio and void volume-to-binder volume ratio that produced more effective particle bonding. Breaking stress also increased with an increase in CaO content and CaO-to-SiO2 ratio of fly ash, which resulted in more effective bonding between particles. The effect of curing time on the breaking stress of fly ash amended specimens was characterized by (1) an increase in breaking stress via increase in curing time and cementitious bond formation or (2) a constant breaking stress with curing time due to competing mechanisms during loading. Specimens cured under a vertical stress showed an increase in breakings stress with applied load water removal prior to cementitious bond formation that reduced the water-to-binder ratio and led to more effective cementation.  相似文献   

14.
Literature regarding the pore pressure generation characteristics and in turn the cyclic resistance behaviour of silty sand deposits is confusing. In an attempt to clarify the effect of nonplastic fines on undrained cyclic pore pressure response of sand–silt mixtures, an experimental programme utilising around 289 stress-controlled cyclic triaxial tests on specimens of size 50 mm diameter and 100 mm height was carried out at a frequency of 0.1 Hz. Specimens were prepared to various measures of density through constant gross void ratio approach, constant relative density approach, constant sand skeleton void ratio approach, and constant interfine void ratio approach to study the effect of nonplastic fines on pore pressure response of sand–silt mixtures. The effect of relative density, confining pressure as well as the frequency and magnitude of cyclic loading was also studied. It was observed that the pore pressure response is greatly influenced by the limiting silt content and the relative density of a specimen corresponding to any approach. The influence of other parameters such as relative density, confining pressure and magnitude of cyclic loading was as usual but an increase in frequency of cyclic loading was seen to generate excess pore pressure at a higher rate indicating an impact load type of behaviour at higher frequency. Utilising the entire test results over a wide range of parameters a new pore pressure band for sand–silt mixtures in line with Lee and Albaisa (1974) has been proposed. Similarly another pore pressure band corresponding to 10th cycle of loading as suggested by Dobry (1985) and up to a shear strain of around 25% has been proposed. These two bands can readily be used by researchers and field engineers to readily assess the pore pressure response of sand–silt mixtures.  相似文献   

15.
The seismic performance of a tailings impoundment can be adversely affected by the behavior of the retained tailings. However, there remains considerable uncertainty in tailings liquefaction analysis. Twenty cyclic simple shear tests conducted on tailings from a gold mine in Quebec, Canada, were simulated numerically. The simulations indicated that the dynamic behavior of tailings could be modelled reasonably well, except that the weighted cyclic resistance curve of the tailings differed from that of clean sand which was used to develop the constitutive model (UBCSAND). An (N1)60-CS value of 10 blows/30 cm was estimated for the tailings based on calibration at a CSR of 0.10 for 15 cycles of loading. Numerical simulation of the behavior of a 20-m-high deposit of tailings during an earthquake (Mw = 5.9) indicated liquefaction of the upper 8 m of tailings. Liquefaction analysis using the Simplified method with published magnitude scaling factors (MSF) did not predict the occurrence of liquefaction. The use of MSF values calculated from the laboratory testing predicted liquefaction in the upper 8 m of tailings, corresponding quite well with the numerical simulation. The results indicate that both analytical and numerical methods can be used to evaluate the potential for tailings liquefaction under seismic loads.  相似文献   

16.
利用从现场取得的原状土样,通过室内动三轴试验对循环荷载作用下的变形、孔压和强度特性进行研究。试验研究主要考虑了周围固结压力、循环剪切应力比、荷载频率和循环次数等因素的影响。研究表明,在循环荷载作用下,孔隙水压力和轴向应变均是一个波动上升的过程。当循环应力比增大时,动孔隙水压力变化幅值显著增加,而残余孔压也较大。同时,孔隙水压力值也随着周围压力的增大而明显增大。当作用荷载频率比较大时,需要更多的循环次数才能达到小频率作用荷载能达到的孔隙水压力值。但是,随着循环荷载作用次数的增加,频率对孔隙水压力的影响有减小的趋势。  相似文献   

17.
紫坪铺面板坝堆石料颗粒破碎试验研究   总被引:2,自引:0,他引:2  
采用大型三轴仪对紫坪铺面板坝堆石料进行了单调和循环荷载下的固结排水剪切试验,研究了不同孔隙比情况下颗粒破碎及剪胀的变化规律。试验表明:(1)单调和循环荷载条件下,堆石料颗粒破碎率与塑性功之间存在一致的双曲线关系;(2)峰值应力处剪胀率与颗粒破碎率在半对数坐标中呈近似线性关系;(3)峰值应力处主应力比与相应的剪胀率呈近似线性关系,且上述结果受初始孔隙比的影响不大。研究成果有助于进一步了解堆石料的颗粒破碎特点,对建立复杂应力条件下考虑颗粒破碎和状态相关性的弹塑性本构模型,分析紫坪铺面板堆石坝汶川地震破损机制是十分有益的。  相似文献   

18.
考虑循环载荷下饱和黏土软化的损伤边界面模型研究   总被引:1,自引:0,他引:1  
胡存  刘海笑  黄维 《岩土力学》2012,33(2):459-466
研究表明,循环载荷作用下饱和黏土将发生软化,其机制主要有两个:一是孔压的积累;二是土体原有结构的不断损伤和新结构的不断重塑。针对上述机制,基于广义各向同性硬化准则建立了考虑饱和黏土循环软化的损伤单面模型。该模型在有效应力空间中引入损伤变量,表征土体结构的损伤和重塑程度,在连续的循环加载下,损伤不断累积,边界面则随着损伤的累积不断收缩,以模拟饱和黏土刚度和强度的软化;以应力反向点作为边界面的广义各向同性硬化中心和映射法则的映射中心,灵活地选择塑性模量的插值公式以模拟塑性变形和孔压的累积以及应力-应变的滞回特性。应用该模型对不排水循环三轴试验进行模拟,并且考查了循环周次、循环应力水平和固结历史对饱和黏土循环软化特性的影响,并与相关试验比较,验证了模型的有效性。  相似文献   

19.
以京津高铁和杭州地铁沿线的两种典型粉质黏土为研究对象,并采用英国GDS多功能三轴仪完成了静、动力强度测试,研究了两种土的静力不排水抗剪强度和在交通荷载高振次循环下的动强度、临界动应力比、应变发展模式以及振后抗剪强度等方面的差异。对比发现,长期循环荷载作用下两种土的应变发展和振后强度均有很大不同。与京津地区粉质黏土相比,杭州地铁沿线土含水率高、孔隙比大、密度低、灵敏度高、强度低。两种原状土在小幅振动后土体强度略有增大,而随振幅增大,振后强度将低于未经历振动时的不排水强度值;而重塑土振后强度均低于静剪强度。  相似文献   

20.
海相软土压缩特性的试验研究   总被引:1,自引:0,他引:1  
陈波  孙德安  吕海波 《岩土力学》2013,34(2):381-388
对不同取样方式得到的上海、江苏地区海相软黏土的原状样和重塑样进行了单向压缩和等向压缩试验,分别得到各自的压缩曲线、压缩指数 和回弹指数 。通过比较原状样、重塑样的归一化压缩曲线的差异,确认了结构性对软黏土压缩特性的影响。把屈服应力后的压缩曲线外延至10 kPa时的孔隙比定义为参考孔隙比 ,用于简单量化土的组构。根据多次单向压缩试验结果得到的压缩指数 ,建立了原状样和重塑样的压缩指数 与孔隙比 或参考孔隙比 的相关方程,并通过单向、等向压缩指数的比较,认为此方程也适用于等向压缩试验结果。根据原状、重塑样压缩指数 与参考孔隙比 具有基本相同关系的结论,对原状样的结构屈服特性进行了探讨,认为原状样在压力大于结构屈服应力后,胶结已基本破坏,原状样和重塑样压缩特性差异主要是由组构的差异引起的。该研究成果,尤其是压缩指数 与参考孔隙比 的相关方程,可为工程提供重要的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号