首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a framework for assessing the probability of exceeding a specified liquefaction-induced settlement at a given site in a given exposure time. This framework deals not only with the effect of liquefaction (in terms of settlement) but also with probabilistic characterization of all possible ground motions at a given site (in terms of a joint distribution of amax and Mw). Additionally, a new concept, referred to herein as liquefaction-induced settlement hazard curve, is introduced for assessing the annual rate of settlement exceedance at a given site. This settlement hazard curve concept has the potential to be a very useful tool in the field of geotechnical earthquake engineering. Satisfactory results are obtained in the demonstration examples analyzed with the proposed framework. Whereas the proposed framework is simple and effective, further refinements to this framework, especially on the treatment of epistemic uncertainty, are warranted.  相似文献   

2.
The town of Edessa is located on Northern Greece at a region that is characterized as low seismicity zone due to the fact that few moderate events of M < 6 occurred during the last century. According to the Greek Seismic Code, the expected acceleration having a 10% probability of being exceeded in 50 years is equal to 0.16g. However, an amplification of ground motion is likely to occur due the local geology that is consisted of Holocene fluvio-torrential deposits. The basic aim of this paper is to evaluate the site amplification due to geological conditions and to assess the liquefaction hazard. In order to achieve this, 1-D site response analyses were performed. The data that were employed for the construction of the numerical models have been collected from borings with standard penetrations tests (SPT) that were drilled for construction purposes. Afterward, the liquefaction potential of the subsoil layers was evaluated taking into consideration two seismic scenarios. The first scenario was based on the seismic parameters, earthquake magnitude and PGA, assigned by the Greek Seismic Code. On the second seismic model, we employed the values of acceleration, resulted from the 1-D analyses and the earthquake magnitude as it was defined by the Greek Seismic Code. In order to compile the liquefaction hazard maps, we initially estimated the liquefaction potential index (LPI) of the soil columns using the parameters provided by SPT, for both seismic loadings, and afterward we correlated these values with the proposed classification of the severity of liquefaction-induced deformations. In addition, having computed the value of probability based on the LPI, liquefaction manifestations probability maps were compiled for both scenarios. The result of this study was that liquefaction-induced ground disruptions are likely to occur at the center of the city, among the branches of Voda River, only when the amplified values of acceleration are taken into account to the computation of liquefaction potential.  相似文献   

3.
A geotechnical information system (GTIS) was constructed within a spatial geographic information system (GIS) framework to reliably predict geotechnical information and accurately estimate site effects at Gyeongju, an urban area in South Korea. The system was built based on both collected and performed site investigation data in addition to acquired geo-knowledge data. Seismic zoning maps were constructed using the site period (T G) and mean shear wave velocity to a depth of 30 m (V S30), and these maps were presented as a regional strategy to mitigate earthquake-induced risks in the study area. In particular, the T G distribution map indicated the susceptibility to ground motion resonance in periods ranging from 0.2 to 0.5 s and the corresponding seismic vulnerability of buildings with two to five stories. Seismic zonation of site classification according to V S30 values was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site and administrative subunit in the study area. In addition, we investigated the site effects according to subsurface and surface ground irregularities at Gyeongju by seismic response analyses in time domains based on both two- and three-dimensional spatial finite element models, which were generated using spatial interface coordinates between geotechnical subsurface layers predicted by the GTIS. This practical study verified that spatial GIS-based geotechnical information can be a very useful resource in determining how to best mitigate seismic hazards, particularly in urban areas.  相似文献   

4.
The conventional liquefaction potential assessment methods (also known as simplified methods) profoundly rely on empirical correlations based on observations from case histories. A probabilistic framework is developed to incorporate uncertainties in the earthquake ground motion prediction, the cyclic resistance prediction, and the cyclic demand prediction. The results of a probabilistic seismic hazard assessment, site response analyses, and liquefaction potential analyses are convolved to derive a relationship for the annual probability and return period of liquefaction. The random field spatial model is employed to quantify the spatial uncertainty associated with the in-situ measurements of geotechnical material.  相似文献   

5.
常德-张家界高速公路某大桥桥基砂土液化评价   总被引:2,自引:0,他引:2  
结合常德张家界高速公路某大桥桥基工程,在DSD160型电磁式振动三轴试验仪上,通过往返加荷三轴试验,对饱和砂土进行了液化试验研究,探讨了基于动三轴液化试验结果判断饱和砂土液化的方法。并尝试了这种室内研究反应分析的液化可能性估计方法与地震剪应力时程相结合的综合判断方法。在该高速公路大桥桥基的饱和砂土液化评价中,采用这种综合判断方法,对大桥桥基砂土液化进行了判断。在判断场地是否液化后,对其液化危害程度进行了等级划分,给出了该工程场地在未来遭受到不同超越概率下的地震作用时发生液化的危害程度,得到了一些有工程实用意义的结果。  相似文献   

6.
This paper proposes a systematic framework for real-time assessment of spatial liquefaction hazard of port areas considering local seismic response characteristics based on a geographic information system (GIS) platform. The framework is integrated and embedded with sequential, interrelated subprocedures and a database for liquefaction-induced damage evaluation that standardizes and both individually and collectively quantifies analytical results. To integrate the current in situ condition of a selected port area, the framework functions as a spatial database system for geotechnical and structural data and as a recipient of automatic transmission of seismic monitoring data. The geotechnical profile correlated with liquefaction potential is compiled into a geotechnical spatial grid built by geostatistical methods. Linked with the geotechnical spatial grid, the processing of site-specific responses is automatically interpreted from previously derived correlations between rock acceleration and maximum acceleration of each soil layer. As a result, the liquefaction severity is determined based on a combined geotechnical spatial grid with seismic load correlation in real-time according to a simplified procedure, allowing calculation of the liquefaction potential index (LPI). To demonstrate practical applications of the framework in estimating the liquefaction hazard in real-time, liquefaction-hazard maps were visualized for two earthquake scenarios, verifying the applicability of the proposed framework.  相似文献   

7.
Beydag dam is under construction on Kucukmenderes River for irrigation purposes. Due to the scarcity of core material and liquefaction of alluvium at the dam site, the original design was changed to Roller Compacted Concete (RCC) from rockfill dam with claycore. Although the new design was safer, it nearly doubled the cost of the dam, so the owner, State Hydraulic Works of Turkey, (DSI) set out to find more economical but equally safe alternative. Since jet-grouting is a cheap ground improvement tool in Turkey, such an alternative was developed for the ground improvement against liquefaction together with concrete face rockfill dam sitting on top of improved ground. This paper presents a detailed discussion of how the new alternative was developed and evaluated: it discusses the determination of jet grouting pattern, the placement of jet grouted blocks, and the assesment of liquefaction. On one hand the soil cement strength of jetgrout columns, internal friction angle of alluvium and rockfill were important in determining the dimensions of the blocks, on the other hand the location of the blocks were highly affected by the areas where liquefaction occurred. One of the most important parameter that has a considerable influence in delineating the boundary betweeen liquefaction and non-liquefaction was the value of stress reduction coefficient (r d), being primarily sensitive to the weight of overburden, which is calculated by the height from the face of dam to the depth where the calculation was made. This approach is justified by two-dimensional ground response analysis. Most importantly, this paper shows that there exists an alternative solution for building dams on the liquefaction prone sites without removing alluvium by using a well known jet grouting technique for improving ground at only selected places.  相似文献   

8.
Australia is a relatively stable continental region but not tectonically inert, having geological conditions that are susceptible to liquefaction when subjected to earthquake ground motion. Liquefaction hazard assessment for Australia was conducted because no Australian liquefaction maps that are based on modern AI techniques are currently available. In this study, several conditioning factors including Shear wave velocity (Vs30), clay content, soil water content, soil bulk density, soil thickness, soil pH, distance from river, slope and elevation were considered to estimate the liquefaction potential index (LPI). By considering the Probabilistic Seismic Hazard Assessment (PSHA) technique, peak ground acceleration (PGA) was derived for 50 yrs period (500 and 2500 yrs return period) in Australia. Firstly, liquefaction hazard index (LHI) (effects based on the size and depth of the liquefiable areas) was estimated by considering the LPI along with the 2% and 10% exceedance probability of earthquake hazard. Secondly, ground acceleration data from the Geoscience Australia projecting 2% and 10% exceedance rate of PGA for 50 yrs were used in this study to produce earthquake induced soil liquefaction hazard maps. Thirdly, deep neural networks (DNNs) were also exerted to estimate liquefaction hazard that can be reported as liquefaction hazard base maps for Australia with an accuracy of 94% and 93%, respectively. As per the results, very-high liquefaction hazard can be observed in Western and Southern Australia including some parts of Victoria. This research is the first ever country-scale study to be considered for soil liquefaction hazard in Australia using geospatial information in association with PSHA and deep learning techniques. This study used an earthquake design magnitude threshold of Mw 6 using the source model characterization. The resulting maps present the earthquake-triggered liquefaction hazard and are intending to establish a conceptual structure to guide more detailed investigations as may be required in the future. The limitations of deep learning models are complex and require huge data, knowledge on topology, parameters, and training method whereas PSHA follows few assumptions. The advantages deal with the reusability of model codes and its transferability to other similar study areas. This research aims to support stakeholders’ on decision making for infrastructure investment, emergency planning and prioritisation of post-earthquake reconstruction projects.  相似文献   

9.
刘芳  李震  蒋明镜  黄雨 《岩土力学》2015,36(12):3548-3555
基于液化侧向变形实用统计模型和地震概率模型,建立了可以考虑地震随机特征和土体性质不确定性的液化侧向变形超越概率模型框架,通过实际案例初步探讨了模型的有效性,并将超越概率模型与现有统计模型的预测结果进行了对比。分析结果表明,若液化侧向变形的条件概率满足正态分布,标准差在5%到20%期望值范围内变化时,对位移超越概率影响不大;若满足对数正态分布,标准差对超越概率有一定影响。实用统计模型只能预测指定地震水平下的液化侧向变形值,而超越概率模型考虑了指定时间内所有可能地震的发生概率,可以同时预测变形值及发生概率,更加适合用于区域性的地震液化灾害评估。  相似文献   

10.
This paper presents a numerical study of mitigation for liquefaction during earthquake loading. Analyses are carried out using an effective stress based, fully coupled, hybrid, finite element-finite differences approach. The sandy soil behavior is described by means of a cyclic elastoplastic constitutive model, which was developed within the framework of a nonlinear kinematic hardening rule. In theory, the philosophies of mitigation for liquefaction can be summarized as two main concepts, i.e. prevention of excess pore water pressure generation and reduction of liquefaction-induced deformations. This paper is primarily concerned with the latter approach to liquefaction mitigation. Firstly, the numerical method and the analytical procedure are briefly outlined. Subsequently, a case-history study, which includes a liquefaction mitigation technique of cement grouting for ground improvement of a sluice gate, is conducted to illustrate the effectiveness of liquefaction countermeasures. Special emphasis is given to the computed results of excess pore water pressures, displacements, and accelerations during the seismic excitation. Generally, the distinctive patterns of seismic response are accurately reproduced by the numerical simulation. The proposed numerical method is thus considered to capture the fundamental aspects of the problems investigated, and yields results for design purposes. From the results in the case, excess pore water pressures eventually reach fully liquefied state under the input earthquake loading and this cannot be prevented. However, liquefaction-induced lateral spreading of the foundation soils can be effectively reduced by the liquefaction mitigation techniques. An erratum to this article can be found at  相似文献   

11.
In the present paper we analyze the effect of local geology on ground motion by means of numerical calculations (numerical models) using total (TS) and effective stress (ES) methods. These numerical calculations have been applied to the site of Itea, Corinth Gulf, which was chosen based on liquefaction susceptibility criteria and field inspection. Data from seismic refraction experiments and cone penetration test N-values as well as selected records of ground motion in nearby areas were used to construct the input file for the numerical model. By means of␣dynamic analysis such characteristics of ground motion as acceleration time histories, response spectra, and amplification function were evaluated. A one-dimensional soil amplification effect was clearly shown. Liquefaction probability at the Itea site was predicted based on the safety factor and the calculation of the induced settlement at the test site. Results of the TS and ES modeling lead us to conclude: (1) the presence of soft soil at Itea caused significant amplification (almost 2.5-fold higher magnitude) of the underlying bedrock motion and, therefore, can contribute to damage; (2) the area of Itea is highly susceptible to liquefaction due to presence of silty sand deposits at depths between 2.48 m (the position of the water table) and 12 m that demonstrate the rapid growth of the excess pore water pressure (EPWP) ratio with an increase in peak ground acceleration values.  相似文献   

12.
Nuclear power plants are designed to prevent the hazardous effects of the earthquakes and any external events to keep the safety of the plant. Ninety-one shallow seismic refraction profiles were performed to determine shear wave velocity of the engineering layers at the site of El Dabaa area that is situated to the northern coastline of Egypt for seismic hazard microzonation evaluation according to hazard index values. A microzonation is a procedure of delineating an area into individual zones having different ranks of numerous seismic hazards. This will aid in classifying areas of high seismic risk which is vigorous for industrial design of nuclear structures. The site response analysis requires the characterization of subsurface materials considering local subsurface profiles of the site. Site classification of the area under investigation was undertaken using P- and S-waves and available borehole data. The studied nuclear power plant site has been characterized as per NEHRP site classification using an average velocity of transverse wave (V s 30 ) of depth 30 m which acquired from seismic survey. This site was categorized into two site classes: the major one is “site class B,” and the minor one is “site class A.” The attenuation coefficient, the damping ratio and the liquefaction potential are geotechnical parameters which were derived from P- and S-waves, and have their major effects on the seismic hazard contribution. 1D ground response analysis was carried out in the places of seismic profiles inside the site for estimating the amount of ground quaking using peak ground acceleration (PGA), site amplification, predominant frequency and spectral accelerations on the surface of ground by the DEEPSOIL software package. Seven factors (criteria) deliberated to assess the earthquake hazard index map are: (1) the peak ground acceleration at the bedrock, (2) the amplification of the site, (3) the liquefaction potential, (4) the main frequency of the earthquake signal, (5) the average V s of the first 30 m from the ground surface, (6) the depth to the groundwater and (7) the depth to the bedrock. These features were exemplified in normalized maps after uniting them to 0–1 scores according to some criteria by the minimum and maximum values as linear scaling points. Multi-criteria evaluation is an application of multi-criteria decision analysis theory that used for developing a seismic hazard index map for a nuclear power plant site at El Dabaa area in ArcGIS 10.1 software. Two models of decision making were used in this work for seismic hazard microzonation. The analytic hierarchy process model was applied to conduct the relative weights of the criteria by pairwise comparison using Expert Choice Software. An earthquake hazard index map was combined using Weighted Linear Combination model of the raster weighted overlay tool of ArcGIS 10.1. The results indicated that most of the study site of the nuclear power plant is a region of low to moderate hazard; its values are ranging between 0.2 and 0.4.  相似文献   

13.
National and international seismic codes and recommendations provide criteria for liquefaction exclusion based on a peak ground acceleration (PGA) threshold value. In this paper, after a brief review of the procedures and the values suggested in those documents, a database of liquefaction case histories was created, exploiting the background data used in the most relevant verification charts, currently employed in research and professional practice. This dataset was used to identify, on the basis of simple statistical analyses, a PGA threshold on the free ground surface below which liquefaction is unlikely to occur, regardless of the geological site conditions. The calculated value, which is on the order of 0.07–0.1 g, based on the model employed to fit the data, was analyzed in light of information collected during the 2012 Emilia seismic sequence in Italy, which produced many liquefaction events triggered by low acceleration values. The case history of the Emilia earthquake advises setting a PGA threshold for code and recommendations at the lower probability level of occurrence, in the order of 1 %.  相似文献   

14.
This article describes a new performance-based approach for evaluating the return period of seismic soil liquefaction based on standard penetration test (SPT) and cone penetration test (CPT) data. The conventional liquefaction evaluation methods consider a single acceleration level and magnitude and these approaches fail to take into account the uncertainty in earthquake loading. The seismic hazard analysis based on the probabilistic method clearly shows that a particular acceleration value is being contributed by different magnitudes with varying probability. In the new method presented in this article, the entire range of ground shaking and the entire range of earthquake magnitude are considered and the liquefaction return period is evaluated based on the SPT and CPT data. This article explains the performance-based methodology for the liquefaction analysis – starting from probabilistic seismic hazard analysis (PSHA) for the evaluation of seismic hazard and the performance-based method to evaluate the liquefaction return period. A case study has been done for Bangalore, India, based on SPT data and converted CPT values. The comparison of results obtained from both the methods have been presented. In an area of 220 km2 in Bangalore city, the site class was assessed based on large number of borehole data and 58 Multi-channel analysis of surface wave survey. Using the site class and peak acceleration at rock depth from PSHA, the peak ground acceleration at the ground surface was estimated using probabilistic approach. The liquefaction analysis was done based on 450 borehole data obtained in the study area. The results of CPT match well with the results obtained from similar analysis with SPT data.  相似文献   

15.
In this paper, liquefaction potential of soil is evaluated within a probabilistic framework based on the post-liquefaction cone penetration test (CPT) data using an evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). Based on the developed limit state function using MGGP, a relationship is given between probability of liquefaction (PL) and factor of safety against liquefaction using Bayesian theory. This Bayesian mapping function is further used to develop a PL-based design chart for evaluation of liquefaction potential of soil. Using an independent database of 200 cases, the efficacy of the present MGGP-based probabilistic method is compared with that of the available probabilistic methods based on artificial neural network (ANN) and statistical methods. The proposed method is found to be more efficient in terms of rate of successful prediction of liquefaction and non-liquefaction cases, in three different ranges of PL values compared to ANN and statistical methods.  相似文献   

16.
The Bayesian network (BN) is a type of graphical network based on probabilistic inference that has been gradually applied to assessment of seismic liquefaction potential. However, how to construct a robust BN remains underexplored in this field. This paper aims to present an efficient hybrid approach combining domain knowledge and data to construct a BN that facilitates the integration of multiple factors and the quantification of uncertainties within a network model to assess seismic liquefaction. Initially, only using given domain knowledge, a naive network model can be constructed using interpretive structural modeling. Thereafter, some effective information about the naive model is provided to construct a robust model using structural learning of BN from historic data. Finally, the returning predictive results and the predictive results are compared to other methods including non-probabilistic and probabilistic models for seismic liquefaction using the metrics of the overall accuracy, the area under the curve of receiver operating characteristic, prediction, recall and F1 score. The methodology proposed in this paper achieved better performance, and we discussed the power and value of the proposed approach at the end of this paper, which suggest that BN is a good alternative tool for seismic liquefaction prediction.  相似文献   

17.
以标贯试验为依据的砂土液化确定性及概率判别法   总被引:1,自引:0,他引:1  
核电厂址非基岩场地的地基液化问题是核电厂选址的关键问题,亟需建立核电厂址地基液化判别方法。回顾了以标贯试验和地表峰值加速度为依据的砂土液化判别方法的演化历史,依据Idriss-Boulanger确定液化临界曲线的基本方法,提出了确定液化临界曲线的基本原则,分别依据美国液化数据库、中国抗震规范液化判别式所用的液化数据及综合两者的液化数据资料,给出了相应的液化临界曲线,验证了液化临界曲线的位置对不同的细粒含量、有效上覆压力、现场试验方法的液化数据的合理性,分析了测量或估计土层循环应力比和修正标贯击数各种因素的不确定性对液化临界曲线的敏感性,结果表明:所提的液化临界曲线不易受各种因素的影响。利用Monte Carlo模拟、加权最大似然法和加权经验概率法,给出了液化临界曲线的名义抗液化安全系数与液化概率的经验关系式及概率等值线,并对核电厂Ⅰ类、Ⅱ类和Ⅲ类抗震物项地基,给出了相应的液化临界曲线。  相似文献   

18.
19.
Evaluating the failure probability of a slope under the seismic condition during a given exposure time is important for performance-based assessment of slope stability. In this paper, a two-stage method is suggested to study the seismic stability of a slope during a given exposure time. In the first stage, the exceedance probability of the horizontal pseudo-static acceleration is evaluated. In the second stage, the vulnerability curve of the slope, which shows the relationship between the horizontal pseudo-static acceleration and the failure probability of the slope, is established. The failure probability of the slope during a given exposure time is then assessed by combining the exceedance probability curve of the horizontal pseudo-static acceleration and the vulnerability curve of the slope. Examples investigated show that the reliability of a slope under the seismic condition is controlled by multiple slip surfaces. A slope may have different failure probabilities during the same exposure time when it is at different locations because of different levels of ground shaking. Event at the same site, different slopes may have different failure probability because of the difference in factors like slope geometries and geological conditions. The method suggested in this paper can be used to quantify the effect of the above factors on the reliability of a slope.  相似文献   

20.
The spatial distribution of soil shear-wave velocity and the fundamental period of vibration were selected as input parameters for the determination of potential seismic site effects in the Saguenay region, Canada. The methodology used in this study involved three clear steps. First, a 3D geological model of the surficial deposits was built taking into consideration the type, spatial distribution and thickness of the deposits. Second, representative average Vs values were determined for each of the major soil units. Finally, the average shear-wave velocity from the ground surface to bedrock (Vsav), the shear-wave velocity of the upper 30 m (Vs30) and the fundamental site resonance period (T0) were calculated over a regular grid for the study area. The results include the spatial distribution of the fundamental site resonance period, the average shear-wave velocity in the first 30 m of the ground and the spatial distribution of National Building Code of Canada seismic soil classes for the Saguenay region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号