首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
利用氮同位素技术识别石家庄市地下水硝酸盐污染源   总被引:36,自引:2,他引:36  
地下水NO- 3污染是石家庄市地下水管理面临的一个主要问题。本次研究通过地下水及其潜在补给源的氮同位素和水化学调查,确定和识别石家庄市地下水NO- 3污染程度和污染源。地下水中的无机氮化合物主要以NO- 3形式存在,浓度变化在 2.65~152.1 m g/L之间,均值为(54.88± 31)m g/L( n=44),48%的样品浓度超过国际饮水标准(50 m g/L)。地下水样品的NO- 3- 15 N值域+4.53‰~+25.36‰,均值+9.94‰±4.40‰( n=34)。34个样品中,22个样品(65%)的氮同位素值大于+8‰;与1991年相比,氮同位素组成指示地下水NO- 3的主要来源已由当时矿化的土壤有机氮变为现在的动物粪便或污水;结合Cl-分析,南部地下水NO-3还受到东明渠污水的影响。其余12个样品(35%)的氮同位素值变化在+4‰~+8‰之间,其中 15 N值较大的(+6‰~+8‰)指示来自土壤有机氮,较小的(+4‰~+6‰)指示来自氨挥发较弱、快速入渗的化肥厂污水。根据上述研究结果,提出了改善石家庄市地下水管理的措施。  相似文献   

2.
环境氮同位素方法示踪石家庄市地下水中硝酸盐来源   总被引:4,自引:0,他引:4  
焦鹏程 《地球学报》1996,17(Z1):181-188
石家庄市地下水中硝酸盐含量呈上升趋势,水中硝酸盐含量分布范围为(0.4-96.0)×10-6,均值28.4×10-6,其δ15N值分布范围+6.1‰—+8.4‰,在地下水水位降落漏斗中心区(面积约8km2)δ15N值大于+9.6‰,表明有来自动物粪例的污染,其余地区水中硝酸盐的δ15N值介于+6.1‰—8.4‰之间,均值+6.9‰,表明该硝酸盐来自土壤有机氮  相似文献   

3.
为了识别石家庄市南部污灌区地下水硝酸盐污染来源, 采集5种潜在污染源和19组地下水样用于化学和氮同位素分析.灌溉污水NH4+的δ15N值较低(4.0‰), 施化肥土壤和粪堆下土壤NO3-的δ15N值分别为1.4‰和12.4‰; 仅施厩肥的蔬菜种植区下伏近30 m厚包气带沉积物NO3-的δ15N分布显示, 来自动物粪便的NO3-已运移到11.5 m以下包气带, 均值10.9‰; 污水灌溉农田下伏厚层包气带沉积物样品分析结果指示, 土壤层下伏包气带沉积物δ15N值变幅较小, 均值5.7‰.污灌区内除一深井外, 其他水井地下水硝酸盐浓度变化在52.6~124.5 mg/L之间, 均值79.72 mg/L, δ15N值变化在5.3‰~8.3‰之间, 均值7.0‰.污灌区地下水的δ15N值较污灌区土壤层下伏包气带沉积物的δ15N值高, 表明地下水NO3-除了来自灌溉的污水外, 还有δ15N值更高的其他来源, 这些来源主要是人和动物粪便.利用线性混合模型计算, 污灌区地下水NO3-来自灌溉的污水, 约占76%, 而来自人和动物粪便的NO3-约占24%.为控制污灌区地下水NO3-浓度进一步增长, 不仅要加强污水灌溉管理, 还要加强人和动物粪便的管理.   相似文献   

4.
地下水硝酸盐污染的同位素研究进展   总被引:4,自引:1,他引:3       下载免费PDF全文
土壤原生氮、无机化肥和动物粪便等氮源中15N富集程度存在差异,使得利用稳定同位素N(δ15N/14N)能有效识别地下水中NO3-的来源。但N不是一个稳定的示踪剂,地下水中NO3-的δ15N是N源的初始δ15N值、后期进入含水层的迁移路径中和地下水流运动途径中不同形态的N之间相互转化过程,如矿化、吸附、硝化和反硝化作用,发生的同位素分馏作用后的综合反映。利用地下水中NO3-的δ15N确定其来源必须首先确定分馏作用是否发生及其反应程度。本文重点探讨了判断分馏作用是否发生及其反应程度的方法,总结了N同位素判别地下水NO3-污染源方法的发展历程,并指出未来研究工作应该以硝酸盐在包气带中的迁移转化规律为重点。  相似文献   

5.
针对近年来地下水硝酸盐污染日益严重的现象,本文运用氮同位素技术对位于典型农业区的东阿水文地质单元地下水氮污染来源进行了研究,结果表明:浅层地下水监测点的NO3-含量较高,平均含量为27.77 mg·L-1 ,δ15N 为7.8‰~12‰,反映了浅层地下水主要受到生活污水或粪便的污染;深层地下水(岩溶水)中NO3- 含量相对较低,平均含量为12.81 mg·L-1,δ15N为7.2‰~14.3‰,同样指示为生活污水或粪便污染,与补给区人为干扰密切相关。部分监测点地下水质量较差,建议研究区内使用高效的灌溉技术及科学的施肥方式,补给区附近的家禽养殖场可通过修建发酵池和改善饲料配方等方式,从源头上降低地下水硝酸盐的输入量。   相似文献   

6.
地下水NO3-氮与氧同位素研究进展   总被引:1,自引:0,他引:1  
人为活动通常是地下水硝酸盐污染的主要原因.不同来源的NO3-具有不同的氮、氧同位素组成,利用地下水NO3-中的δ15N和δ18O值可有效识别地下水硝酸盐污染的来源.引起地下水中NO3-含量显著减少的不同物理、化学和生物过程,所产生的氮、氧同位素分馏效应有明显差别.地下水系统中反硝化作用发生时,NO3-中氮和氧同位素分馏系数呈一定比例.因此NO3-中δ15N和δ18O值也是示踪地下水硝酸盐循环,尤其是反硝化作用的有效手段.利用NO3-中氮和氧双同位素,并与其他环境同位素及化学分析技术相结合,示踪NO3-来源及其循环是地下水硝酸盐污染研究的重要方向之一.综述了利用地下水硝酸盐中氮和氧同位素识别NO3-污染源与循环的研究进展,简述了近年迅速发展的阴离子交换树脂取样法,概述了此方面研究存在的主要问题,并展望了今后的研究方向.  相似文献   

7.
贵阳雨水无机氮沉降的氮、氧同位素特征   总被引:1,自引:0,他引:1  
雨水中氮沉降主要以铵盐(NH+4)和硝酸盐(NO-3)形式存在,这与地表生态氮循环和酸雨等环境问题直接相连.我们测定了贵阳地区雨水中的NH+4和NO-3的氮氧同位素值,讨论了氮素形态分布及其同位素组成特征,探讨了雨水中溶解无机氮的成因.雨水中的NH+4和NO-3平均值分别为0.81和o.51mg N/L;铵盐的δ15N平均值为-4.7‰,较硝酸盐的δ15N平均值负,雨水中硝酸盐δ18O值为25.2‰~40.1‰,平均值为34.2±4.3‰,季节性差别不显著.  相似文献   

8.
贵阳地区夏季雨水硫和氮同位素地球化学特征   总被引:29,自引:6,他引:29  
对贵阳地区小雨和暴雨硫和氮同位素组成特征进行了研究。小雨中硫酸盐δ34S值和硝酸盐δ15N值分别为-7.96‰~+0.73‰(平均-4.90‰)和-3.77‰~+8.49‰(平均+2.00‰),暴雨中则分别为-2.07‰~+18.32‰(平均+4.59‰)和-2.91‰~+10.10‰(平均+4.10‰),表明两种类型雨水中硫酸盐和硝酸盐来源不同。小雨硫酸盐的负δ34S值与当地硫来源(煤炭燃烧和生物成因硫)有关,而暴雨硫酸盐的正δ34S值则为海源(太平洋)结果。小雨硝酸盐的δ15N值范围较宽(-3.77‰~+8.49‰),其来源不清,但该范围内较高δ15N值的样品(>+6.0‰)可能与干沉降和火力发电厂废气有关。暴雨硝酸盐的δ15N值仍然反映海源(太平洋)。小雨铵盐的δ15N值与铵盐含量有较好的相关关系(R2=0.92)。小雨铵盐中低δ15N值的样品(-1.73‰~-22.01‰)与云水(-28.6‰)对15N较少的吸收有关。贵阳地区较高的铵盐含量(平均1.25mg/L)和较低的δ15N值(平均-12.18‰±6.68‰)表明,铵盐来源于农业肥料的大范围施用和土壤NH3的挥发。  相似文献   

9.
桂林甑皮岩岩溶地下水硝酸盐来源与转化   总被引:1,自引:0,他引:1  
峰林平原是人类活动和居住的密集区,也是岩溶地下水系统的主要径流、排泄地段,地下水资源丰富。随着城市化的发展,地下水硝酸盐污染问题日渐突出。为研究桂林甑皮岩岩溶地下水硝酸盐来源与转化,分别于2018年10月、2019年2月、3月和4月采集地下水样,利用常规水化学及氮氧同位素技术识别硝酸盐来源与转化。结果表明:甑皮岩地下水中NO3-浓度在0~19.523 mg?L-1,δ15N-NO3-和δ18O-NO3-分别在-0.17‰~45.12‰和-5.82‰~16.47‰。硝酸盐氮氧同位素数据表明,甑皮岩地下水硝酸盐来源主要为粪便及污废水,少量来自降雨中的NH4+和土壤有机氮。受岩溶介质不均一性的控制,甑皮岩地下水中NO3-浓度、δ15N-NO3-和δ18O-NO3-均表现出明显的空间变异性。甑皮岩地下水硝酸盐的转化过程复杂,受控于季节和岩溶介质不均一性,表现为旱季以反硝化为主,雨季则以硝化过程为主。厘清硝酸盐来源与转化为治理甑皮岩地下水硝酸盐污染提供一定的科学依据。   相似文献   

10.
为判断华南地区典型城市地下水硝酸盐污染源,采集珠海市香洲城区及周边地区地下水样,并测定NO3-、NH4+、NO2-、PO43-、1δ5N-NO3-以及EC、pH值等。结果显示:在城市区地下水大多数样品中,NO3-是主要的无机氮形态。近40%的水样超过世界卫生组织饮用水标准(NO3--N≤10mg/l),部分井水有NO2-检出,整体污染较为严重。地下水硝酸盐1δ5N落在6.879‰~26.144‰范围内,而生活污水及化粪池泄漏是地下水NO3--N主要污染源。反硝化作用可能是导致雨季地下水1δ5N值升高的重要因素。另外,稀释、混合等作用可能是导致地下水NO3-浓度季节变化复杂的原因。  相似文献   

11.
百花湖水体氮的空间分布研究   总被引:2,自引:1,他引:1  
初步探讨了百花湖水体中氮的空间分布特征,并分析了氮及溶解氧(DO)的相关性。对8个站位的表层、4m、8m及12m水体中总氮、氨氮、硝酸盐氮、亚硝酸盐氮及溶解氧进行了测定。结果表明,百花湖水体中总氮的平均含量为1.18mg/L,氨氮的平均含量为0.144mg/L,硝酸盐氮的平均含量为0.20mg/L,亚硝酸盐氮的平均含量为0.018mg/L。百花湖入湖口附近的1号采样点总氮、氨氮和硝酸盐氮的平均浓度都较其它采样点高。分析表明百花湖中DO浓度与硝酸盐氮和亚硝酸盐氮呈负相关,相关系数分别为-0.629、-0.724。   相似文献   

12.
伍艳  任海平  王玮屏  兰雁  沈细中 《岩土力学》2014,35(8):2278-2285
通过室内试验,考察了去离子水及不同浓度总氮溶液对土体物理力学性能的影响,并通过土体矿物成分含量及微观形貌分析,对总氮溶液与土体作用机制进行了初步探讨。结果表明,总氮对土体物理力学性能影响明显:(1)土体塑性指数、相对密度和有效黏聚力随总氮溶液浓度增大而减小,有效内摩擦角随溶液浓度的增大而增大;(2)各浸泡条件下,土体应力-应变关系曲线变化规律基本一致,均呈应变硬化现象,土体剪切峰值随总氮溶液浓度的增大先减小后增大;(3)孔隙水压力随轴向应变的增加先增加,然后缓慢降低,最后曲线逐渐趋于水平,表现出较大的剪胀性;(4)总氮溶液与土体间相互作用主要包括离子交换作用、微生物分解作用和溶蚀及胶结作用,这些作用通过改变土体的矿物成分含量,使其微观形貌及孔隙特征发生明显变化,最终导致土体的宏观力学特性改变。  相似文献   

13.
液氮冻结条件下岩石孔隙结构损伤试验研究   总被引:2,自引:0,他引:2  
液氮温度极低,约在-195.56-180.44℃之间,当与岩石接触时会对岩石孔隙结构产生损伤。根据这一特点,低温液氮有望作为压裂流体对储层进行压裂改造。为了研究液氮冻结对岩石孔隙结构损伤的影响,选取两种不同砂岩岩样,分别在不同初始含水饱和度条件下进行液氮冻结处理。对冻结前、后的岩样进行孔隙度以及核磁共振测试,得到岩样在冻结前、后的孔隙度、横向弛豫时间T2分布以及T2谱面积变化情况。试验结果表明:液氮冻结会对岩石的孔隙结构产生损伤,损伤程度受到岩性、孔隙度和岩石含水饱和度等因素影响;岩石含水饱和度越大,损伤就越严重,当岩石含水饱和度达到100%时,岩石表面产生了明显裂纹;岩石在液氮冻结下损伤形式主要是微孔隙的发育和扩展,微孔隙的增加会使岩石孔隙结构的连通性增强,甚至会产生新的大尺寸孔隙,从而对孔隙结构造成严重损伤。  相似文献   

14.
氮是煤中的常见元素之一,煤中氮的赋存形态多样且随煤阶发生变化。以邯郸-峰峰矿区为例,利用X射线光电子能谱(XPS)实验,研究不同变质程度煤(Rran=1.08%~3.67%)中有机氮的赋存形态,探讨煤中各形态有机氮相对含量随煤阶的变化规律。结果表明:按N 1s XPS谱图分峰峰值的结合能可将煤中氮的形态归为N-6、N-5、N-Q和N-X四种;研究区煤中N-5的相对含量最高,且随着煤阶的增高而降低;N-Q的相对含量随着煤阶的增高而增高;煤中N-6的相对含量随煤阶呈“增-减-稳”的变化规律;N-X的相对含量为9.1%~35.1%,其与煤阶关系不明显;在煤阶Rran=1.08%~1.47%的范围内,煤的N 1s XPS谱图中缺失N-Q分峰,表明褐煤中相对含量最高的质子化吡啶氮在此阶段已几乎全部去质子化而转化为吡啶氮。不同变质阶段氮的赋存形态变化特征对燃煤发电及煤化工领域煤化学参数选取提供参考。   相似文献   

15.
李兵  张永成  王森 《探矿工程》2019,46(2):35-39
以寺河矿区穿越采空区氮气钻井试验为背景,通过分析煤层取心测试数据,指出钻井穿越3号煤层采空区抽采9+15号煤层瓦斯的必要性。利用“三带”理论明确了3号煤层采空区顶板以上74.4 m及底板以下22.73 m为钻井漏失带,采用氮气钻井穿越该层段有助于安全高效施工;优化了穿越采空区氮气钻井的三开井身结构;根据穿越采空区氮气钻井工艺需要,配套设计了地面钻井工艺流程。氮气钻井工艺在寺河矿区试验的成功,证明该工艺的可行性,对穿越采空区钻井技术的研究和推广应用具有重要的指导意义。  相似文献   

16.
滇池流域集约化农田区氮素损失研究   总被引:1,自引:0,他引:1  
集约化农田区氮素流失是构成滇池流域面源污染、水体富营养化的重要因素。基于滇池流域集约化农田区产业结构特征、施肥方式、土壤物化性质分析,利用现场模拟试验,探讨水土生复合系统中氮素输移、分布和损失机制,量化不同情景下氮素损失量。研究表明,集约化农田土壤氮素损失主要途径是通过气态(NH3、N2O、NO/NO2、N2等)、作物吸收、生物作用和淋失。气态氮损失受温度、土壤特性、施肥类型、方式与施肥量、地下水埋藏条件等因素综合制约,NO-3 N是氮淋失的主要形式。根据试验与计算结果,Ⅰ区和Ⅱ区的合理施肥的氮利用率分别为30 8%和20 8%,高于习惯施肥的11 5%和8 5%,气态损失和淋失率均低于习惯施肥。显然,施肥的合理性是控制集约化农业区氮素损失的重要措施。  相似文献   

17.
Organic nitrogen is omnipresent in nature. The variations of dissolved organic nitrogen (DON) concentration are usually a result of microbial activity, anthropogenic influence, and/or other physical-chemical processes (e.g. photo-mineralization). Therefore, DON serves as an important indicator for aquatic life cycles and water qualities. However, current DON detection methods inevitably produce exaggerated standard deviation, due to their inherent subtraction processes, as shown in the below equation. Consequently, they are incapable of propelling further understandings of the DON occurrence, DON role in nutrient recycling, and DON potential human toxicity as well. SDON=(STN2+SDIN^2)0.5, where: S=standard deviation in an effort to overcome the barricade, the primary goal of this study is to develop a membrane pretreatrnent unit using electro-dialysis (EDI) process. Similar to the well-known mechanism used in dissolved organic carbon (DOC) analysis, which employs acidification and following purging to eliminate the inorganic carbon species, this study believes that EDI could significantly (〉99%) remove the dissolved inorganic nitrogen (DIN) species (i.e., ammonia, nitrite and nitrate) and concurrently retain most of organic nitrogen materials. By grafting the pretreatment unit with a total nitrogen (TN) analyzer, the system then enables direct detection of DON. Meanwhile, EDI discriminates nitrogen not only on size differences, but also on electrostatic force that separates nitrogen species according to their charge, thus making it more advantageous than other membrane technologies. Results showed that this approach was successfully used to separate inorganic from organic nitrogen for the selected water samples, including model amino acids, natural organic water & isolates (i.e., humic substance), and wastewater plant effluents. The EDI process was able to reduce more than 99% of inorganic nitrogen species within 2 hours under a 40-voltage operation condition, ending up with negligible DIN. Meanwhile, it retained more than 90% of organic matter (in terms of DOC) for natural water samples and 80% for wastewater effluent samples, meaning that DON can be analyzed directly without sacrifising significant organics. In addition, the EDI unit deleted other inorganic anions such as bicarbonate, chloride, sulfate, and phosphate, too, implying that this unit might also be applied to other organic matter like organic chloride, sulfur, phosphorous, etc.  相似文献   

18.
坡地氮磷流失过程模拟   总被引:5,自引:3,他引:2       下载免费PDF全文
根据农田坡面氮、磷流失的主要过程,建立了基于次降雨事件的坡面氮、磷迁移模型。模型采用改进的Green-Ampt方程和运动波方程计算下渗与坡面流,土壤侵蚀采用修改的欧洲土壤侵蚀模型计算,用考虑了侵蚀影响与扩散作用的迁移模型计算坡面氮、磷迁移过程,采用一维对流扩散方程计算氮、磷在土壤中的迁移过程。利用室内人工降雨资料对模型进行了率定及验证。结果表明,模型可以较好地模拟地表径流中氮、磷浓度,率定期与验证期模型效率系数均在0.89以上。根据坡地氮、磷流失机理,分析了降雨强度与地表坡度对坡面径流中氮、磷浓度的影响。  相似文献   

19.
分级式除磷脱氮工艺探讨   总被引:5,自引:2,他引:3  
综合考虑生物除磷与脱氮对环境条件的要求,提出了分级式除磷脱氮的工艺模式,旨在将聚磷菌与硝化菌分别控制在两级反应器中优势生长,以解决硝化菌与其他细菌混合生长系统在除磷与脱氮过程中存在的矛盾关系,达到优化除磷脱氮目的.探讨了分级式除磷脱氮的工艺流程、优化除磷脱氮的可行性及研究要点.  相似文献   

20.
以高岭土为原料,采用水热法在晶化前加入合成磁铁矿制得Fe3O4含量为 4.48%的磁性4A分子筛。通过X 射线粉末衍射分析(XRD)、磁化率分析(MS)及磁回收效果实验对制备的磁性4A分子筛进行物性分析,并将该吸附材料应用于氨氮吸附实验,将吸附实验数据根据相应吸附等温方程进行拟合,随后使用动力学分析手段考查了其吸附过程反应机理。表征结果表明,Fe3O4的载入对分子筛的晶体结构影响不大,磁性4A分子筛磁化率稳定,可用来重复使用。该分子筛可以通过磁性分离进行回收,且磁性分离快速高效。吸附实验结果表明磁性4A分子筛容易吸附水中的氨氮,Fe3O4的载入对于分子筛本身的吸附容量影响较小。在Langmuir、Freundlich两种等温吸附模型拟合结果中,Freundlich曲线拟合效果更好。Lagergren准二级吸附动力学拟合结果表明,NH+4在磁性4A分子筛上的吸附过程遵循准二级动力学反应机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号